Solange Moréra
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Solange Moréra.
The EMBO Journal | 1997
Michael A. Gorman; Solange Moréra; Dominic G. Rothwell; Eric de La Fortelle; Clifford D. Mol; John A. Tainer; Ian D. Hickson; Paul S. Freemont
The structure of the major human apurinic/apyrimidinic endonuclease (HAP1) has been solved at 2.2 Å resolution. The enzyme consists of two symmetrically related domains of similar topology and has significant structural similarity to both bovine DNase I and its Escherichia coli homologue exonuclease III (EXOIII). A structural comparison of these enzymes reveals three loop regions specific to HAP1 and EXOIII. These loop regions apparently act in DNA abasic site (AP) recognition and cleavage since DNase I, which lacks these loops, correspondingly lacks AP site specificity. The HAP1 structure furthermore suggests a mechanism for AP site binding which involves the recognition of the deoxyribose moiety in an extra‐helical conformation, rather than a ‘flipped‐out’ base opposite the AP site.
The EMBO Journal | 1998
Xiaodong Zhang; Solange Moréra; Paul A. Bates; Philip C. Whitehead; Arnold I. Coffer; Karl Hainbucher; Rachel A. Nash; Michael J. E. Sternberg; Tomas Lindahl; Paul S. Freemont
The BRCT domain (BRCA1 C‐terminus), first identified in the breast cancer suppressor protein BRCA1, is an evolutionarily conserved protein–protein interaction region of ∼95 amino acids found in a large number of proteins involved in DNA repair, recombination and cell cycle control. Here we describe the first three‐dimensional structure and fold of a BRCT domain determined by X‐ray crystallography at 3.2 Å resolution. The structure has been obtained from the C‐terminal region of the human DNA repair protein XRCC1, and comprises a four‐stranded parallel β‐sheet surrounded by three α‐helices, which form an autonomously folded domain. The compact XRCC1 structure explains the observed sequence homology between different BRCT motifs and provides a framework for modelling other BRCT domains. Furthermore, the established structure of an XRCC1 BRCT homodimer suggests potential protein–protein interaction sites for the complementary BRCT domain in DNA ligase III, since these two domains form a stable heterodimeric complex. Based on the XRCC1 BRCT structure, we have constructed a model for the C‐terminal BRCT domain of BRCA1, which frequently is mutated in familial breast and ovarian cancer. The model allows insights into the effects of such mutations on the fold of the BRCT domain.
The EMBO Journal | 1992
Christian Dumas; Ioan Lascu; Solange Moréra; P Glaser; R Fourme; Valérie Wallet; Marie-Lise Lacombe; Michel Veron; Joël Janin
The X‐ray structure of a point mutant of nucleoside diphosphate kinase (NDP kinase) from Dictyostelium discoideum has been determined to 2.2 A resolution. The enzyme is a hexamer made of identical subunits with a novel mononucleotide binding fold. Each subunit contains an alpha/beta domain with a four stranded, antiparallel beta‐sheet. The topology is different from adenylate kinase, but identical to the allosteric domain of Escherichia coli ATCase regulatory subunits, which bind mononucleotides at an equivalent position. Dimer contacts between NDP kinase subunits within the hexamer are similar to those in ATCase. Trimer contacts involve a large loop of polypeptide chain that bears the site of the Pro‐‐‐‐Ser substitution in Killer of prune (K‐pn) mutants of the highly homologous Drosophila enzyme. Properties of Drosophila NDP kinase, the product of the awd developmental gene, and of the human enzyme, the product of the nm23 genes in tumorigenesis, are discussed in view of the three‐dimensional structure and of possible interactions of NDP kinase with other nucleotide binding proteins.
Journal of Bioenergetics and Biomembranes | 2000
Joël Janin; Christian Dumas; Solange Moréra; Yingwu Xu; Philippe Meyer; Mohamed Chiadmi; Jacqueline Cherfils
Three-dimensional structures are known from X-ray studies of the nucleoside diphosphate(NDP) kinase of many organisms from bacteria to human. All NDP kinases have subunits ofabout 150 residues with a very similar fold based on the αβ sandwich orferredoxin fold.This fold is found in many nucleotide or polynucleotide-binding proteins with no sequencerelationship to NDP kinase. This common fold is augmented here with specificfeatures: asurface α-helix hairpin, the Kpn loop, and the C-terminal extension. The α-helix hairpin andKpn loop make up the nucleotide binding site, which is unique to NDP kinase and differentfrom that of other kinases or ATPases. The Kpn loop and the C-terminal extension are alsoinvolved in the quaternary structure. Whereas all known eukaryotic NDP kinases, includingmitochondral enzymes, are hexamers, some bacterial enzymes are tetramers. However,hexameric and tetrameric NDP kinases are built from the same dimer. The structural environmentof the active histidine is identical in all. The nucleotide binding site is also fully conserved,except for a feature implicating C-terminal residues in the hexamer, but not in the tetramer.Structural data on the native and phosphorylated enzyme, complexes with substrates, inhibitor,and a transition state analog, give a solid basis to a mechanism of phosphate transfer in whichthe largest contributors to catalysis are the 3′-OH of the sugar and the bound Mg2+ in thenucleotide substrate. In contrast, we still lack structural data relating to DNA binding andother functions of NDP kinases.
Fems Microbiology Reviews | 2016
Catherine Grandclément; Mélanie Tannières; Solange Moréra; Yves Dessaux; Denis Faure
Quorum sensing (QS) refers to the capacity of bacteria to monitor their population density and regulate gene expression accordingly: the QS-regulated processes deal with multicellular behaviors (e.g. growth and development of biofilm), horizontal gene transfer and host-microbe (symbiosis and pathogenesis) and microbe-microbe interactions. QS signaling requires the synthesis, exchange and perception of bacterial compounds, called autoinducers or QS signals (e.g. N-acylhomoserine lactones). The disruption of QS signaling, also termed quorum quenching (QQ), encompasses very diverse phenomena and mechanisms which are presented and discussed in this review. First, we surveyed the QS-signal diversity and QS-associated responses for a better understanding of the targets of the QQ phenomena that organisms have naturally evolved and are currently actively investigated in applied perspectives. Next the mechanisms, targets and molecular actors associated with QS interference are presented, with a special emphasis on the description of natural QQ enzymes and chemicals acting as QS inhibitors. Selected QQ paradigms are detailed to exemplify the mechanisms and biological roles of QS inhibition in microbe-microbe and host-microbe interactions. Finally, some QQ strategies are presented as promising tools in different fields such as medicine, aquaculture, crop production and anti-biofouling area.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Elise Haudecoeur; S. Planamente; Amélie Cirou; M. Tannières; Barry J. Shelp; Solange Moréra; Denis Faure
Plants accumulate free L-proline (Pro) in response to abiotic stresses (drought and salinity) and presence of bacterial pathogens, including the tumor-inducing bacterium Agrobacterium tumefaciens. However, the function of Pro accumulation in host-pathogen interaction is still unclear. Here, we demonstrated that Pro antagonizes plant GABA-defense in the A. tumefaciens C58-induced tumor by interfering with the import of GABA and consequently the GABA-induced degradation of the bacterial quorum-sensing signal, 3-oxo-octanoylhomoserine lactone. We identified a bacterial receptor Atu2422, which is implicated in the uptake of GABA and Pro, suggesting that Pro acts as a natural antagonist of GABA-signaling. The Atu2422 amino acid sequence contains a Venus flytrap domain that is required for trapping GABA in human GABAB receptors. A constructed atu2422 mutant was more virulent than the wild type bacterium; moreover, transgenic plants with a low level of Pro exhibited less severe tumor symptoms than did their wild-type parents, revealing a crucial role for Venus flytrap GABA-receptor and relative abundance of GABA and Pro in host-pathogen interaction.
The EMBO Journal | 2001
Sonia Fieulaine; Solange Moréra; Sandrine Poncet; Vicente Monedero; Virginie Gueguen-Chaignon; Anne Galinier; Joël Janin; Josef Deutscher; Sylvie Nessler
HPr kinase/phosphatase (HprK/P) is a key regulatory enzyme controlling carbon metabolism in Gram‐ positive bacteria. It catalyses the ATP‐dependent phosphorylation of Ser46 in HPr, a protein of the phosphotransferase system, and also its dephosphorylation. HprK/P is unrelated to eukaryotic protein kinases, but contains the Walker motif A characteristic of nucleotide‐binding proteins. We report here the X‐ray structure of an active fragment of Lactobacillus casei HprK/P at 2.8 Å resolution, solved by the multiwavelength anomalous dispersion method on a seleniated protein (PDB code 1jb1). The protein is a hexamer, with each subunit containing an ATP‐binding domain similar to nucleoside/nucleotide kinases, and a putative HPr‐binding domain unrelated to the substrate‐binding domains of other kinases. The Walker motif A forms a typical P‐loop which binds inorganic phosphate in the crystal. We modelled ATP binding by comparison with adenylate kinase, and designed a tentative model of the complex with HPr based on a docking simulation. The results confirm that HprK/P represents a new family of protein kinases, first identified in bacteria, but which may also have members in eukaryotes.
PLOS Biology | 2008
Vanesa Olivares-Illana; Philippe Meyer; Emmanuelle Bechet; Virginie Gueguen-Chaignon; Didier Soulat; Sylvie Lazereg-Riquier; Ivan Mijakovic; Josef Deutscher; Alain J. Cozzone; Olivier Laprévote; Solange Moréra; Christophe Grangeasse; Sylvie Nessler
Bacteria were thought to be devoid of tyrosine-phosphorylating enzymes. However, several tyrosine kinases without similarity to their eukaryotic counterparts have recently been identified in bacteria. They are involved in many physiological processes, but their accurate functions remain poorly understood due to slow progress in their structural characterization. They have been best characterized as copolymerases involved in the synthesis and export of extracellular polysaccharides. These compounds play critical roles in the virulence of pathogenic bacteria, and bacterial tyrosine kinases can thus be considered as potential therapeutic targets. Here, we present the crystal structures of the phosphorylated and unphosphorylated states of the tyrosine kinase CapB from the human pathogen Staphylococcus aureus together with the activator domain of its cognate transmembrane modulator CapA. This first high-resolution structure of a bacterial tyrosine kinase reveals a 230-kDa ring-shaped octamer that dissociates upon intermolecular autophosphorylation. These observations provide a molecular basis for the regulation mechanism of the bacterial tyrosine kinases and give insights into their copolymerase function.
Structure | 1993
M Chiadmi; Solange Moréra; Ioan Lascu; Christian Dumas; G. Le Bras; Michel Veron; Joël Janin
BACKGROUND Nucleotide diphosphate kinase (NDP kinase) is a phosphate transfer enzyme involved in cell regulation and in animal development. Drosophila NDP kinase is the product of the abnormal wing disc (awd) developmental gene, a point mutation in which can produce the killer of prune (K-pn) conditional lethal phenotype. The highly homologous mammalian genes control metastasis and a human NDP kinase acts as a transcription factor. RESULTS The X-ray structure of the Awd protein prepared from Drosophila was solved at 2.4 A resolution by molecular replacement from the homologous Dictyostelium protein. Both are hexamers, and both have the same fold and the same active site. Subunit contacts differ as a result of sequence changes in the carboxy-terminal segment and in the loop that is the site of the K-pn mutation. CONCLUSIONS Regulatory properties of animal NDP kinases depend on interactions with other macromolecules, such as DNA and the product of the Drosophila prune gene. The Awd structure suggests an allosteric mechanism of action of NDP kinase where DNA is the effector and the protein undergoes a major conformational change, possibly dissociating to dimers.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Sonia Fieulaine; Solange Moréra; Sandrine Poncet; Ivan Mijakovic; Anne Galinier; Joël Janin; Josef Deutscher; Sylvie Nessler
HPr kinase/phosphorylase (HprK/P) controls the phosphorylation state of the phosphocarrier protein HPr and regulates the utilization of carbon sources by Gram-positive bacteria. It catalyzes both the ATP-dependent phosphorylation of Ser-46 of HPr and its dephosphorylation by phosphorolysis. The latter reaction uses inorganic phosphate as substrate and produces pyrophosphate. We present here two crystal structures of a complex of the catalytic domain of Lactobacillus casei HprK/P with Bacillus subtilis HPr, both at 2.8-Å resolution. One of the structures was obtained in the presence of excess pyrophosphate, reversing the phosphorolysis reaction and contains serine-phosphorylated HPr. The complex has six HPr molecules bound to the hexameric kinase. Two adjacent enzyme subunits are in contact with each HPr molecule, one through its active site and the other through its C-terminal helix. In the complex with serine-phosphorylated HPr, a phosphate ion is in a position to perform a nucleophilic attack on the phosphoserine. Although the mechanism of the phosphorylation reaction resembles that of eukaryotic protein kinases, the dephosphorylation by inorganic phosphate is unique to the HprK/P family of kinases. This study provides the structure of a protein kinase in complex with its protein substrate, giving insights into the chemistry of the phospho-transfer reactions in both directions.