Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sole Pacchioni is active.

Publication


Featured researches published by Sole Pacchioni.


Antiviral Research | 2010

Canarypox and fowlpox viruses as recombinant vaccine vectors: A biological and immunological comparison

Carlo Zanotto; Eleana Pozzi; Sole Pacchioni; Luca Volonté; Carlo De Giuli Morghen; Antonia Radaelli

Canarypox and fowlpox viruses represent alternative vaccine vectors due to their natural host-range restriction to avian species. Although they cannot replicate in mammals, they correctly express transgenes in human cells and elicit a complete immune response in vaccinated subjects. Several studies have evaluated their genomic differences and protective efficacy in preclinical trials, but detailed information is not available for their transgene expression, cytokine modulation and abortive replication in mammals. This study demonstrates that the heterologous HIV gag/pol and env genes are more efficiently expressed by fowlpox in non-immune and immune cells. The production of retrovirus-like particles, the longer transgene expression, and a balanced cytokine induction may confer to fowlpox-based recombinants the ability to elicit a better immune response.


Journal of Virological Methods | 2009

Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins.

Eleana Pozzi; Valeria Basavecchia; Carlo Zanotto; Sole Pacchioni; Carlo De Giuli Morghen; Antonia Radaelli

Human papilloma virus (HPV)-16 is the most prevalent high-risk mucosal genotype and the expression of the E6 and E7 proteins, which can bind to the p53 and p105Rb host cell-cycle regulatory proteins, is related to its tumorigenicity. Virus-like-particle (VLP)-based immunogens developed recently are successful as prophylactic HPV vaccines. However, given the high number of individuals infected already with HPV and the absence of expression of the L1 structural protein in HPV-infected or HPV-transformed cells, an efficient therapeutic vaccine targeting the non-structural E6 and E7 oncoproteins is required. In this study, two new fowlpox virus (FPV) recombinants encoding the HPV-16 E6 and E7 proteins were engineered and evaluated for their correct expression in vitro, with the final aim of developing a therapeutic vaccine against HPV-related cervical tumors. Although vaccinia viruses expressing the HPV-16 and HPV-18 E6 and E7 oncoproteins have already been studied, due to their natural host-range restriction to avian species and their ability to elicit a complete immune response, FPV recombinants may represent efficient and safer vectors also for immunocompromised hosts. The results indicate that FPV recombinants can express correctly the E6 and E7 oncoproteins, and they should represent appropriate vectors for the expression of these oncoproteins in human cells.


Journal of Translational Medicine | 2015

A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers.

Massimiliano Bissa; Elena Illiano; Sole Pacchioni; Francesca Paolini; Carlo Zanotto; Carlo De Giuli Morghen; Silvia Massa; Rosella Franconi; Antonia Radaelli; Aldo Venuti

BackgroundConsidering the high number of new cases of cervical cancer each year that are caused by human papilloma viruses (HPVs), the development of an effective vaccine for prevention and therapy of HPV-associated cancers, and in particular against the high-risk HPV-16 genotype, remains a priority. Vaccines expressing the E6 and E7 proteins that are detectable in all HPV-positive pre-cancerous and cancer cells might support the treatment of HPV-related lesions and clear already established tumors.MethodsIn this study, DNA and fowlpox virus recombinants expressing the E6F47R mutant of the HPV-16 E6 oncoprotein were generated, and their correct expression verified by RT-PCR, Western blotting and immunofluorescence. Immunization protocols were tested in a preventive or therapeutic pre-clinical mouse model of HPV-16 tumorigenicity using heterologous (DNA/FP) or homologous (DNA/DNA and FP/FP) prime/boost regimens. The immune responses and therapeutic efficacy were evaluated by ELISA, ELISPOT assays, and challenge with TC-1* cells.ResultsIn the preventive protocol, while an anti-E6-specific humoral response was just detectable, a specific CD8+ cytotoxic T-cell response was elicited in immunized mice. After the challenge, there was a delay in cancer appearance and a significant reduction of tumor volume in the two groups of E6-immunized mice, thus confirming the pivotal role of the CD8+ T-cell response in the control of tumor growth in the absence of E6-specific antibodies. In the therapeutic protocol, in-vivo experiments resulted in a higher number of tumor-free mice after the homologous DNA/DNA or heterologous DNA/FP immunization.ConclusionsThese data establish a preliminary indication for the prevention and treatment of HPV-related tumors by the use of DNA and avipox constructs as safe and effective immunogens following a prime/boost strategy. The combined use of recombinants expressing both E6 and E7 proteins might improve the antitumor efficacy, and should represent an important approach to control HPV-associated cancers.


Virus Research | 2012

A prime/boost strategy by DNA/fowlpox recombinants expressing a mutant E7 protein for the immunotherapy of HPV-associated cancers.

Antonia Radaelli; Carlo De Giuli Morghen; Carlo Zanotto; Sole Pacchioni; Massimiliano Bissa; Rosella Franconi; Silvia Massa; Francesca Paolini; Antonio Muller; Aldo Venuti

Development of effective therapeutic vaccines against human papilloma virus (HPV) infections remains a priority, considering the high number of new cases of cervical cancer each year by high-risk HPVs, in particular by HPV-16. Vaccines expressing the E7 oncoprotein, which is detectable in all HPV-positive pre-cancerous and cancer cells, might clear already established tumors and support the treatment of HPV-related lesions. In this study, DNA or fowlpox virus recombinants expressing the harmless variant E7GGG of the HPV-16 E7 oncoprotein (DNA(E7GGG) and FP(E7GGG)) were generated. Two immunization regimens were tested in a pre-clinical mouse model by homologous (FP/FP) or heterologous (DNA/FP) prime-boost protocols to evaluate the immune response and therapeutic efficacy of the proposed HPV-16 vaccine. Low levels of anti-E7-specific antibodies were elicited after immunization, and in vivo experiments resulted in a higher number of tumor-free mice after the heterologous immunization. These results establish a preliminary indication for therapy of HPV-related tumors by the combined use of DNA and avipox recombinants, which might represent safer immunogens than vaccinia-based vaccines.


Journal of Translational Medicine | 2011

Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein

Carlo Zanotto; Eleana Pozzi; Sole Pacchioni; Massimiliano Bissa; Carlo De Giuli Morghen; Antonia Radaelli

BackgroundHuman papilloma virus (HPV)-16 is the most prevalent high-risk mucosal genotype. Virus-like-particle (VLP)-based immunogens developed recently have proven to be successful as prophylactic HPV vaccines, but are still too expensive for developing countries. Although vaccinia viruses expressing the HPV-16 L1 protein (HPV-L1) have been studied, fowlpox-based recombinants represent efficient and safer vectors for immunocompromised hosts due to their ability to elicit a complete immune response and their natural host-range restriction to avian species.MethodsA new fowlpox virus recombinant encoding HPV-L1 (FPL1) was engineered and evaluated for the correct expression of HPV-L1 in vitro, using RT-PCR, immunoprecipitation, Western blotting, electron microscopy, immunofluorescence, and real-time PCR assays.ResultsThe FPL1 recombinant correctly expresses HPV-L1 in mammalian cells, which are non-permissive for the replication of this vector.ConclusionThis FPL1 recombinant represents an appropriate immunogen for expression of HPV-L1 in human cells. The final aim is to develop a safe, immunogenic, and less expensive prophylactic vaccine against HPV.


Journal of Translational Medicine | 2013

L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines

Sole Pacchioni; Massimiliano Bissa; Carlo Zanotto; Carlo De Giuli Morghen; Elena Illiano; Antonia Radaelli

BackgroundThe traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most effective control and new vectors have been developed to generate recombinant vaccines against smallpox that induce the same immunogenicity as the traditional one. As protective antibodies are mainly directed against the surface proteins of the two infectious forms of vaccinia, the intracellular mature virions and the extracellular virions, combined proteins from these viral forms can be used to better elicit a complete and protective immunity.MethodsFour novel viral recombinants were constructed based on the fowlpox genetic background, which independently express the vaccinia virus L1 and A27 proteins present on the mature virions, and the A33 and B5 proteins present on the extracellular virions. The correct expression of the transgenes was determined by RT-PCR, Western blotting, and immunofluorescence.Results and conclusionsUsing immunoprecipitation and Western blotting, the ability of the proteins expressed by the four novel FPL1R, FPA27L, FPA33R and FPB5R recombinants to be recognized by VV-specific hyperimmune mouse sera was demonstrated. By neutralisation assays, recombinant virus particles released by infected chick embryo fibroblasts were shown not be recognised by hyperimmune sera. This thus demonstrates that the L1R, A27L, A33R and B5R gene products are not inserted into the new viral progeny. Fowlpox virus replicates only in avian species, but it is permissive for entry and transgene expression in mammalian cells, while being immunologically non–cross-reactive with vaccinia virus. These recombinants might therefore represent safer and more promising immunogens that can circumvent neutralisation by vector-generated immunity in smallpox-vaccine-experienced humans.


Archives of Virology | 2010

Canarypox and fowlpox viruses as recombinant vaccine vectors: an ultrastructural comparative analysis

Sole Pacchioni; Luca Volonté; Carlo Zanotto; Eleana Pozzi; Carlo De Giuli Morghen; Antonia Radaelli

Due to their natural host-range restriction to avian species, canarypox virus (CP) and fowlpox virus (FP) represent efficient and safe vaccine vectors, as they correctly express transgenes in human cells, elicit complete immune responses, and show protective efficacy in preclinical animal models. At present, no information is available on the differences in the abortive replication of these two avipox viruses in mammalian cells. In the present study, the replicative cycles of CP and FP, wild-type and recombinants, are compared in permissive and non-permissive cells, using transmission electron microscopy. We demonstrate that in non-permissive cells, the replicative cycle is more advanced in FP than in CP, that human cells, whether immune or not, are less permissive to avipox replication than monkey cells, and that the presence of virus-like particles only occurs after FP infection. Overall, these data suggest that the use of FP recombinants is more appropriate than the use of CP for eliciting an immune response.


Journal of Translational Medicine | 2010

Fowlpox virus recombinants expressing HPV-16 E6 and E7 oncogenes for the therapy of cervical carcinoma elicit humoral and cell-mediated responses in rabbits

Antonia Radaelli; Eleana Pozzi; Sole Pacchioni; Carlo Zanotto; Carlo De Giuli Morghen

BackgroundAround half million new cases of cervical cancer arise each year, making the development of an effective therapeutic vaccine against HPV a high priority. As the E6 and E7 oncoproteins are expressed in all HPV-16 tumour cells, vaccines expressing these proteins might clear an already established tumour and support the treatment of HPV-related precancerous lesions.MethodsThree different immunisation regimens were tested in a pre-clinical trial in rabbits to evaluate the humoral and cell-mediated responses of a putative HPV-16 vaccine. Fowlpoxvirus (FP) recombinants separately expressing the HPV-16 E6 (FPE6) and E7 (FPE7) transgenes were used for priming, followed by E7 protein boosting.ResultsAll of the protocols were effective in eliciting a high antibody response. This was also confirmed by interleukin-4 production, which increased after simultaneous priming with both FPE6 and FPE7 and after E7 protein boost. A cell-mediated immune response was also detected in most of the animals.ConclusionThese results establish a preliminary profile for the therapy with the combined use of avipox recombinants, which may represent safer immunogens than vaccinia-based vectors in immuno-compromised individuals, as they express the transgenes in most mammalian cells in the absence of a productive replication.


Science of The Total Environment | 2016

Removal of enteric viruses and Escherichia coli from municipal treated effluent by zebra mussels

Valeria Mezzanotte; Francesca Marazzi; Massimiliano Bissa; Sole Pacchioni; Andrea Binelli; Marco Parolini; Stefano Magni; Franco M. Ruggeri; Carlo De Giuli Morghen; Carlo Zanotto; Antonia Radaelli

Dreissena polymorpha is a widespread filter-feeder species, resistant to a broad range of environmental conditions and different types of pollutants,which has recently colonized Italian freshwaters. Although widely used to monitor pollution in freshwater environments, this species is also an important food source for some fish and water birds. It can also be used to concentrate or remove particulate organic matter to interrupt avian-to-human transmission of pollutants and control health risks for animals and humans. In this study, the accumulation/inactivation in D. polymorpha of human health-related spiked enteric viruses was described. The removal of endogenous Escherichia coli, the classical indicator of fecal contamination,was tested as well.Our preliminary lab-scale results demonstrate that zebra mussels can reduce significantly poliovirus titer after 24 h and rotavirus titer after 8 h. E. coli counts were also reduced in the presence of zebra mussels by about 1.5 log after 4 h and nearly completely after 24 h. The fate of the two enteric viruses after concentration by zebra mussels was also investigated after mechanical disruption of the tissues. To our knowledge, the accumulation from water and inactivation of human health-related enteric viruses by zebra mussels has never been reported.


Virus Research | 2013

Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain.

Massimiliano Bissa; Sole Pacchioni; Carlo Zanotto; Carlo De Giuli Morghen; Elena Illiano; Francesca Granucci; Ivan Zanoni; Achille Broggi; Antonia Radaelli

The first-generation smallpox vaccine was based on live vaccinia virus (VV) and it successfully eradicated the disease worldwide. Therefore, it was not administered any more after 1980, as smallpox no longer existed as a natural infection. However, emerging threats by terrorist organisations has prompted new programmes for second-generation vaccine development based on attenuated VV strains, which have been shown to cause rare but serious adverse events in immunocompromised patients. Considering the closely related animal poxviruses that might also be used as bioweapons, and the increasing number of unvaccinated young people and AIDS-affected immunocompromised subjects, a safer and more effective smallpox vaccine is still required. New avipoxvirus-based vectors should improve the safety of conventional vaccines, and protect from newly emerging zoonotic orthopoxvirus diseases and from the threat of deliberate release of variola or monkeypox virus in a bioterrorist attack. In this study, DNA and fowlpox recombinants expressing the L1R, A27L, A33R and B5R genes were constructed and evaluated in a pre-clinical trial in mouse, following six prime/boost immunisation regimens, to compare their immunogenicity and protective efficacy against a challenge with the lethal VV IHD-J strain. Although higher numbers of VV-specific IFNγ-producing T lymphocytes were observed in the protected mice, the cytotoxic T-lymphocyte response and the presence of neutralising antibodies did not always correlate with protection. In spite of previous successful results in mice, rabbits and monkeys, where SIV/HIV transgenes were expressed by the fowlpox vector, the immune response elicited by these recombinants was low, and most of the mice were not protected.

Collaboration


Dive into the Sole Pacchioni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldo Venuti

The Catholic University of America

View shared research outputs
Researchain Logo
Decentralizing Knowledge