Soledad Cabeza de Vaca
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soledad Cabeza de Vaca.
Nature Communications | 2015
Melissa A. Stouffer; Catherine Woods; Jyoti C. Patel; Christian R. Lee; Paul Witkovsky; Li Hong Bao; Robert P. Machold; Kymry T. Jones; Soledad Cabeza de Vaca; Maarten E. A. Reith; Kenneth D. Carr; Margaret E. Rice
Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices.
Brain Research | 2000
Kenneth D. Carr; Gye-Young Kim; Soledad Cabeza de Vaca
7 days beyond cessation of insulin treatment) elevation of threshold in ad libitum fed rats and, more transiently, reversed the threshold-lowering effect of food restriction. Acute insulin treatment (3 mU, 15 min prior) also elevated threshold in food-restricted rats. These results are consistent with the hypothesis that insulin modulates sensitivity of a brain reward system and that hypoinsulinemia may be the common factor in food restriction and diabetes that accounts for the enhancement of perifornical LHSS.
Pharmacology, Biochemistry and Behavior | 2012
Danielle Zheng; Soledad Cabeza de Vaca; Kenneth D. Carr
Cocaine conditioned place preference (CPP) is more persistent in food-restricted than ad libitum fed rats. This study assessed whether food restriction acts during conditioning and/or expression to increase persistence. In Experiment 1, rats were food-restricted during conditioning with a 7.0 mg/kg (i.p.) dose of cocaine. After the first CPP test, half of the rats were switched to ad libitum feeding for three weeks, half remained on food restriction, and this was followed by CPP testing. Rats tested under the ad libitum feeding condition displayed extinction by the fifth test. Their CPP did not reinstate in response to overnight food deprivation or a cocaine prime. Rats maintained on food restriction displayed a persistent CPP. In Experiment 2, rats were ad libitum fed during conditioning with the 7.0 mg/kg dose. In the first test only a trend toward CPP was displayed. Rats maintained under the ad libitum feeding condition did not display a CPP during subsequent testing and did not respond to a cocaine prime. Rats tested under food-restriction also did not display a CPP, but expressed a CPP following a cocaine prime. In Experiment 3, rats were ad libitum fed during conditioning with a 12.0 mg/kg dose. After the first test, half of the rats were switched to food restriction for three weeks. Rats that were maintained under the ad libitum condition displayed extinction by the fourth test. Their CPP was not reinstated by a cocaine prime. Rats tested under food-restriction displayed a persistent CPP. These results indicate that food restriction lowers the threshold dose for cocaine CPP and interacts with a previously acquired CPP to increase its persistence. In so far as CPP models Pavlovian conditioning that contributes to addiction, these results suggest the importance of diet and the physiology of energy balance as modulatory factors.
The Journal of Neuroscience | 2013
David S. Tukey; Jainne M. Ferreira; Shannon O. Antoine; James D'amour; Ipe Ninan; Soledad Cabeza de Vaca; Salvatore Incontro; Charlotte M. Wincott; Julian K. Horwitz; Diana T. Hartner; Carlo B. Guarini; Latika Khatri; Yossef Goffer; Duo Xu; Roseann F. Titcombe; Megna Khatri; Dave S. Marzan; Shahana S. Mahajan; Jing Wang; Robert C. Froemke; Kenneth D. Carr; Chiye Aoki; Edward B. Ziff
The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca2+-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.
Brain Research | 2011
Shan Liu; Danielle Zheng; Xing-Xiang Peng; Soledad Cabeza de Vaca; Kenneth D. Carr
Previously, a learning-free measure was used to demonstrate that chronic food restriction (FR) increases the reward magnitude of a wide range of abused drugs. Moreover, a variety of striatal neuroadaptations were detected in FR subjects, some of which are known to be involved in synaptic plasticity but have been ruled out as modulators of acute drug reward magnitude. Little is known about effects of FR on drug-conditioned place preference (CPP) and brain regional mechanisms that may enhance CPP in FR subjects. The purpose of the present study was to compare the expression and persistence of a conditioned place preference (CPP) induced by a relatively low dose of cocaine (7.0mg/kg, i.p.) in ad libitum fed (AL) and FR rats and take several brain regional biochemical measures following the first CPP conditioning session to probe candidate mechanisms that may underlie the more robust CPP observed in FR subjects. Behaviorally, AL subjects displayed a CPP upon initial testing which extinguished rapidly over the course of subsequent test sessions while CPP in FR subjects persisted. Despite previous reports of elevated BDNF protein in forebrain regions of FR rats, the FR protocol used in the present study did not alter BDNF levels in dorsal hippocampus, nucleus accumbens or medial prefrontal cortex. On the other hand, FR rats, whether injected with cocaine or vehicle, displayed elevated p-ERK1/2 and p-Ser845-GluA1 in dorsal hippocampus. FR rats also displayed elevated p-ERK1/2 in medial prefrontal cortex and elevated p-ERK1 in nucleus accumbens, with further increases produced by cocaine. The one effect observed exclusively in cocaine-treated FR rats was increased p-Ser845-GluA1 in nucleus accumbens. These findings suggest a number of avenues for continuing investigation with potential translational significance.
Neuropsychopharmacology | 2007
Yan Lin; Soledad Cabeza de Vaca; Kenneth D. Carr; Eric A. Stone
The present experiments were undertaken to clarify the role of central α1-adrenoceptors in reward processes. Rats, trained to self-stimulate via electrodes in the medial forebrain bundle of the lateral hypothalamus, were administered α1-selective drugs near the locus coeruleus (LC), a site of a dense concentration of α1-receptors. Effects on reward potency were assessed from shifts in rate–frequency curves while effects on motor response capacity were judged from changes in the maximal rates of responding. It was found that local blockade of LC α1-receptors with terazosin produced a significant dose-dependent and site-dependent rightward shift of 0.08 log units and a significant decrease of 16.3% in the maximum response rate. Both effects were completely reversed by coadministration of the α1-agonist, phenylephrine and were not attributable to terazosins weak action at α2-adrenoceptors. It is concluded that LC α1-adrenoceptors are involved both in reward/motivational processes and operant response elaboration which are postulated to work together to facilitate goal attainment.
Brain Research | 2007
Soledad Cabeza de Vaca; Pavitra Kannan; Yan Pan; Nancy Jiang; Yanjie Sun; Kenneth D. Carr
Adenosine A(2A) receptors are preferentially expressed in rat striatum, where they are concentrated in dendritic spines of striatopallidal medium spiny neurons and exist in a heteromeric complex with D(2) dopamine (DA) receptors. Behavioral and biochemical studies indicate an antagonistic relationship between A(2A) and D(2) receptors. Previous studies have demonstrated that food-restricted (FR) rats display behavioral and striatal cellular hypersensitivity to D(1) and D(2) DA receptor stimulation. These alterations may underlie adaptive, as well as maladaptive, behaviors characteristic of the FR rat. The present study examined whether FR rats are hypersensitive to the A(2A) receptor agonist, CGS-21680. In Experiment 1, spontaneous horizontal motor activity did not differ between FR and ad libitum fed (AL) rats, while vertical activity was greater in the former. Intracerebroventricular (i.c.v.) administration of CGS-21680 (0.25 and 1.0 nmol) decreased both types of motor activity in FR rats, and returned vertical activity levels to those observed in AL rats. In Experiment 2, FR rats given access to a running wheel for a brief period outside of the home cage rapidly acquired wheel running while AL rats did not. Pretreatment with CGS-21680 (1.0 nmol) blocked the acquisition of wheel running. When administered to FR subjects that had previously acquired wheel running, CGS-21680 suppressed the behavior. In Experiment 3, CGS-21680 (1.0 nmol) activated both ERK 1/2 and CREB in caudate-putamen with no difference between feeding groups. However, in nucleus accumbens (NAc), CGS-21680 failed to activate ERK 1/2 and selectively activated CREB in FR rats. These results indicate that FR subjects are hypersensitive to several effects of an adenosine A(2A) agonist, and suggest the involvement of an upregulated A(2A) receptor-linked signaling pathway in NAc. Medications targeting the A(2A) receptor may have utility in the treatment of maladaptive behaviors associated with FR, including substance abuse and compulsive exercise.
Brain Research | 2006
Joy Hao; Soledad Cabeza de Vaca; Yan Pan; Kenneth D. Carr
It was previously reported that chronic food restriction and maintenance of rats at 75-80% of initial body weight enhanced the reward-potentiating effect of D-amphetamine in the lateral hypothalamic self-stimulation (LHSS) paradigm. Moreover, the enhancement reversed in parallel with body weight recovery when ad libitum access to food was reinstated. The present study tested the hypothesis that hypoleptinemia during food restriction is necessary for expression of enhanced drug reward. In Experiment 1, intracerebroventricular (i.c.v.) infusion of leptin (0.5 microg/0.5 microl/hr for 8 days) in food-restricted rats did not alter the rewarding effect of D-amphetamine (0.5 mg/kg, i.p.). Considering that i.c.v. leptin may not diffuse into deep brain regions where direct effects on drug reward sensitivity may be exerted, effects of acute bilateral microinjection of leptin (0.5 microg) in ventral tegmental area and nucleus accumbens were tested in Experiment 2 and found to have no effect. In Experiment 3, chronic i.c.v. leptin infusion in ad libitum fed rats decreased food intake and body weight and enhanced the rewarding effect of D-amphetamine. Sensitivity to D-amphetamine returned to normal as body weight recovered following cessation of leptin infusion. This result suggests that weight loss, whether from hormone-induced appetite suppression or experimenter-imposed food restriction, is sufficient to enhance drug reward sensitivity. Experiment 4 tested whether food restriction in the absence of body weight loss alters drug reward sensitivity. Rats received chronic i.c.v. infusion of the orexigenic melanocortin receptor antagonist, SHU9119 (0.02 microg/0.5 microl/hr for 12 days), and a subset were pair-fed to vehicle-infused controls. Although these subjects ingested approximately 50% of the amount of food ingested by free-feeding SHU9119-infused rats, they displayed no weight loss and no change in sensitivity to D-amphetamine. Together, results of this study support the importance of weight loss, but not leptin, in the enhancement of drug reward sensitivity.
European Journal of Neuroscience | 2017
Jiangyong Ouyang; Ioana Carcea; Jennifer K. Schiavo; Kymry T. Jones; Ariana Rabinowitsch; Rhonda Kolaric; Soledad Cabeza de Vaca; Robert C. Froemke; Kenneth D. Carr
Chronic food restriction potentiates behavioral and cellular responses to drugs of abuse and D‐1 dopamine receptor agonists administered systemically or locally in the nucleus accumbens (NAc). However, the alterations in NAc synaptic transmission underlying these effects are incompletely understood. AMPA receptor trafficking is a major mechanism for regulating synaptic strength, and previous studies have shown that both sucrose and d‐amphetamine rapidly alter the abundance of AMPA receptor subunits in the NAc postsynaptic density (PSD) in a manner that differs between food‐restricted and ad libitum fed rats. In this study we examined whether food restriction, in the absence of reward stimulus challenge, alters AMPAR subunit abundance in the NAc PSD. Food restriction was found to increase surface expression and, specifically, PSD abundance, of GluA1 but not GluA2, suggesting synaptic incorporation of GluA2‐lacking Ca2+‐permeable AMPARs (CP‐AMPARs). Naspm, an antagonist of CP‐AMPARs, decreased the amplitude of evoked EPSCs in NAc shell, and blocked the enhanced locomotor response to local microinjection of the D‐1 receptor agonist, SKF‐82958, in food‐restricted, but not ad libitum fed, subjects. Although microinjection of the D‐2 receptor agonist, quinpirole, also induced greater locomotor activation in food‐restricted than ad libitum fed rats, this effect was not decreased by Naspm. Taken together, the present findings are consistent with the synaptic incorporation of CP‐AMPARs in D‐1 receptor‐expressing medium spiny neurons in NAc as a mechanistic underpinning of the enhanced responsiveness of food‐restricted rats to natural rewards and drugs of abuse.
The Journal of Neuroscience | 1998
Soledad Cabeza de Vaca; Kenneth D. Carr