Solène Languille
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Solène Languille.
Ageing Research Reviews | 2012
Solène Languille; Stéphane Blanc; Olivier Blin; Cindy I. Canale; Alexandre Dal-Pan; G. Devau; Marc Dhenain; Olene Dorieux; Jacques Epelbaum; Doris Gomez; Isabelle Hardy; Pierre-Yves Henry; E.A. Irving; Julia Marchal; Nadine Mestre-Francés; Martine Perret; Jean-Luc Picq; Fabien Pifferi; Anisur Rahman; Esther Schenker; Jérémy Terrien; Marc Théry; J.-M. Verdier; Fabienne Aujard
The use of non-human primate models is required to understand the ageing process and evaluate new therapies against age-associated pathologies. The present article summarizes all the contributions of the grey mouse lemur Microcebus murinus, a small nocturnal prosimian primate, to the understanding of the mechanisms of ageing. Results from studies of both healthy and pathological ageing research on the grey mouse lemur demonstrated that this animal is a unique model to study age-dependent changes in endocrine systems, biological rhythms, thermoregulation, sensorial, cerebral and cognitive functions.
European Journal of Neuroscience | 2009
Solène Languille; Sabrina Davis; Paulette Richer; Cristina Alcacer; Serge Laroche; Bernard Hars
The ability to form long‐term memories exists very early during ontogeny; however, the properties of early memory processes, brain structures involved and underlying cellular mechanisms are poorly defined. Here, we examine the role of extracellular signal‐regulated kinase (ERK), a member of the mitogen‐activated protein kinase/ERK signaling cascade, which is crucial for adult memory, in the consolidation and reconsolidation of an early memory using a conditioned taste aversion paradigm in 3‐day‐old rat pups. We show that intraperitoneal injection of SL327, the upstream mitogen‐activated protein kinase kinase inhibitor, impairs both consolidation and reconsolidation of early memory, leaving short‐term memory after acquisition and after reactivation intact. The amnesic effect of SL327 diminishes with increasing delays after acquisition and reactivation. Biochemical analyses revealed ERK hyperphosphorylation in the amygdala but not the hippocampus following acquisition, suggesting functional activation of the amygdala as early as post‐natal day 3, although there was no clear evidence for amygdalar ERK activation after reactivation. These results indicate that, despite an immature brain, the basic properties of memory and at least some of the molecular mechanisms and brain structures implicated in aversion memory share a number of similarities with the adult and emerge very early during ontogeny.
Behavioural Brain Research | 2012
Solène Languille; Fabienne Aujard; Fabien Pifferi
The data are inconsistent about the ability of dietary omega-3 fatty acids to prevent age-associated cognitive decline. Indeed, most clinical trials have failed to demonstrate a protective effect of omega-3 fatty acids against cognitive decline, and methodological issues are still under debate. In contrast to human studies, experiments performed in adult rodents clearly indicate that omega-3 fatty acids supplement can improve behavioural and cognitive functions. The inconsistent observations between human and rodent studies highlight the importance of the use of non-human primate models. The aim of the present study was to address the impact of omega-3 fatty acids (given in the form of dietary fish oil) on exploratory activity, emotional status and spatial reference memory in the aged mouse lemur, a non-human primate. Aged animals fed fish oil exhibited decreased exploratory activity, as manifested by an increase in the latency to move and a reduced distance travelled in an open-field. The fish oil-supplemented animals exhibited no change in the anxiety level, but they were more reactive to go into the dark arms of a light/dark plus-maze. In addition, we found that fish oil supplementation did not significantly improve the spatial memory performance in the Barnes maze task. This study demonstrated for the first time that a fish oil diet initiated late in life specifically modifies the exploratory behaviour without improving the spatial memory of aged non-human primates. Omega-3 fatty acid supplementation may be effective when started early in life but less effective when started at later ages.
Learning & Memory | 2009
Gérard Coureaud; Solène Languille; Benoist Schaal; Bernard Hars
Mammary pheromone (MP)-induced odor memory is a new model of appetitive memory functioning early in a mammal, the newborn rabbit. Some properties of this associative memory are analyzed by the use of anisomycin as an amnesic agent. Long-term memory (LTM) was impaired by anisomycin delivered immediately, but not 4 h after either acquisition or reactivation. Thus, the results suggest that this form of neonatal memory requires both consolidation and reconsolidation. By extending these notions to appetitive memory, the results reveal that consolidation and reconsolidation processes are characteristics of associative memories of positive events not only in the adult, but also in the newborn.
Learning & Memory | 2008
Solène Languille; Nadège Gruest; Paullette Richer; Bernard Hars
The temporal dynamics of consolidation and reconsolidation of taste/odor aversion memory are evaluated during rat pup growth at postnatal days 3, 10, and 18. This is assessed through the temporal gradients of efficacy of a protein synthesis inhibitor (anisomycin) in inducing amnesia after either acquisition (consolidation) or reactivation (reconsolidation). The results show a progressive reduction with age of the delay during which the inhibitor is able to induce amnesia. Control experiments rule out a reduction of anisomycin efficacy due to blood brain barrier growth or decrease in protein synthesis inhibition. Thus, these results present the first evidence that the protein synthesis-dependent phase of memory stabilization requires less time with age. This decrease occurs in parallel for consolidation and reconsolidation. Such changes in the dynamics of memory processing could contribute to the cognitive improvement associated with development.
Learning & Memory | 2011
Gérard Coureaud; Solène Languille; Virginie Joly; Benoist Schaal; Bernard Hars
The mammary pheromone promotes the acquisition of novel odorants (CS1) in newborn rabbits. Here, experiments pinpoint that CS1 becomes able to support neonatal learning of other odorants (CS2). We therefore evaluated whether these first- and second-order memories remained dependent after reactivation. Amnesia induced after CS2 recall selectively blocked this memory, when recall and amnesia of CS1 left the souvenir of CS2 safe; this finding partially differed from results obtained in adult mammals. Thus, in this model of neonatal appetitive odor learning, second-order memory seems to depend on first-order memory for its formation but not for its maintenance.
Oxidative Medicine and Cellular Longevity | 2013
Fabien Pifferi; Alexandre Dal-Pan; Solène Languille; Fabienne Aujard
In several species, resveratrol, a polyphenolic compound, activates sirtuin proteins implicated in the regulation of energy balance and biological clock processes. To demonstrate the effect of resveratrol on clock function in an aged primate, young and aged mouse lemurs (Microcebus murinus) were studied over a 4-week dietary supplementation with resveratrol. Spontaneous locomotor activity and daily variations in body temperature were continuously recorded. Reduction in locomotor activity onset and changes in body temperature rhythm in resveratrol-supplemented aged animals suggest an improved synchronisation on the light-dark cycle. Resveratrol could be a good candidate to restore the circadian rhythms in the elderly.
Frontiers in Behavioral Neuroscience | 2015
Solène Languille; Agatha Liévin-Bazin; Jean-Luc Picq; Caroline Louis; Sophie Dix; Jean de Barry; Olivier Blin; Jill C. Richardson; Régis Bordet; Esther Schenker; Fathia Djelti; Fabienne Aujard
Owing to a similar cerebral neuro-anatomy, non-human primates are viewed as the most valid models for understanding cognitive deficits. This study evaluated psychomotor and mnesic functions of 41 young to old mouse lemurs (Microcebus murinus). Psychomotor capacities and anxiety-related behaviors decreased abruptly from middle to late adulthood. However, mnesic functions were not affected in the same way with increasing age. While results of the spontaneous alternation task point to a progressive and widespread age-related decline of spatial working memory, both spatial reference and novel object recognition (NOR) memory tasks did not reveal any tendency due to large inter-individual variability in the middle-aged and old animals. Indeed, some of the aged animals performed as well as younger ones, whereas some others had bad performances in the Barnes maze and in the object recognition test. Hierarchical cluster analysis revealed that declarative-like memory was strongly impaired only in 7 out of 25 middle-aged/old animals. These results suggest that this analysis allows to distinguish elder populations of good and bad performers in this non-human primate model and to closely compare this to human aging.
PLOS ONE | 2013
Anisur Rahman; Solène Languille; Yves Lamberty; Claudio Babiloni; Martine Perret; Régis Bordet; Olivier Blin; Tom Jacob; Alexandra Auffret; Esther Schenker; Jill C. Richardson; Fabien Pifferi; Fabienne Aujard
A bulk of studies in rodents and humans suggest that sleep facilitates different phases of learning and memory process, while sleep deprivation (SD) impairs these processes. Here we tested the hypothesis that SD could alter spatial learning and memory processing in a non-human primate, the grey mouse lemur (Microcebus murinus), which is an interesting model of aging and Alzheimers disease (AD). Two sets of experiments were performed. In a first set of experiments, we investigated the effects of SD on spatial learning and memory retrieval after one day of training in a circular platform task. Eleven male mouse lemurs aged between 2 to 3 years were tested in three different conditions: without SD as a baseline reference, 8 h of SD before the training and 8 h of SD before the testing. The SD was confirmed by electroencephalographic recordings. Results showed no effect of SD on learning when SD was applied before the training. When the SD was applied before the testing, it induced an increase of the amount of errors and of the latency prior to reach the target. In a second set of experiments, we tested the effect of 8 h of SD on spatial memory retrieval after 3 days of training. Twenty male mouse lemurs aged between 2 to 3 years were tested in this set of experiments. In this condition, the SD did not affect memory retrieval. This is the first study that documents the disruptive effects of the SD on spatial memory retrieval in this primate which may serve as a new validated challenge to investigate the effects of new compounds along physiological and pathological aging.
Chronobiology International | 2012
Fabien Pifferi; Anisur Rahman; Solène Languille; Alexandra Auffret; C. Babiloni; Olivier Blin; Yves Lamberty; Jill C. Richardson; Fabienne Aujard
Converging evidence shows that the non-human primate gray mouse lemur (Microcebus murinus) is ideal for the study of the aging process and for testing the effects of new therapies and dietary interventions on age-associated pathologies. One such dietary supplement is resveratrol (RSV), a dietary polyphenolic compound with several positive effects on metabolic functions and longevity. However, little is known about the effect of RSV on the lemur sleep-wake cycle, which reflects mammalian brain function and health. In the present study, the authors investigated this effect by comparing sleep-wake cycles in adult lemurs based on electroencephalographic (EEG) rhythms. The effect of short-term RSV supplementation on the sleep-wake cycle of mouse lemurs was evaluated in entrained conditions (long-day photoperiods, light:dark 14:10). After 3 wks of RSV supplementation, the animals exhibited a significantly increased proportion of active-wake time, occurring mainly during the resting phase of the sleep-wake cycle (+163%). The increase in active-wake time with RSV supplementation was accompanied by a significant reduction of both paradoxical sleep (−95%) and slow-wave sleep (−38%). These changes mainly occurred during the resting phase of the sleep-wake cycle (RSV supplementation induced negligible changes in active-wake time during the active phase of the sleep-wake cycle). The present data suggest that RSV may be a potent regulator of sleep-wake rhythms and could be of major interest in the study of sleep perturbations associated with aging and neuropathology. (Author correspondence: [email protected])