Solène Passemard
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Solène Passemard.
ACS Nano | 2012
Davide Staedler; Thibaud Magouroux; Rachid Hadji; Cécile Joulaud; Jérôme Extermann; Sebastian Schwung; Solène Passemard; Christelle Kasparian; Gareth Clarke; Mathias Gerrmann; Ronan Le Dantec; Yannick Mugnier; Daniel Rytz; Daniel Ciepielewski; Christine Galez; Sandrine Gerber-Lemaire; Lucienne Juillerat-Jeanneret; Luigi Bonacina; Jean-Pierre Wolf
Nonlinear optical nanocrystals have been recently introduced as a promising alternative to fluorescent probes for multiphoton microscopy. We present for the first time a complete survey of the properties of five nanomaterials (KNbO(3), LiNbO(3), BaTiO(3), KTP, and ZnO), describing their preparation and stabilization and providing quantitative estimations of their nonlinear optical response. In the light of their prospective use as biological and clinical markers, we assess their biocompatibility on human healthy and cancerous cell lines. Finally, we demonstrate the great potential for cell imaging of these inherently nonlinear probes in terms of optical contrast, wavelength flexibility, and signal photostability.
ChemMedChem | 2014
Roberto Buratto; Aurélien Bornet; Jonas Milani; Daniele Mammoli; Nicola Salvi; Maninder Singh; Aurélien Laguerre; Solène Passemard; Sandrine Gerber-Lemaire; Sami Jannin; Geoffrey Bodenhausen
Transverse and longitudinal relaxation times (T1ρ and T1) have been widely exploited in NMR to probe the binding of ligands and putative drugs to target proteins. We have shown recently that long‐lived states (LLS) can be more sensitive to ligand binding. LLS can be excited if the ligand comprises at least two coupled spins. Herein we broaden the scope of ligand screening by LLS to arbitrary ligands by covalent attachment of a functional group, which comprises a pair of coupled protons that are isolated from neighboring magnetic nuclei. The resulting functionalized ligands have longitudinal relaxation times T1(1H) that are sufficiently long to allow the powerful combination of LLS with dissolution dynamic nuclear polarization (D‐DNP). Hyperpolarized weak “spy ligands” can be displaced by high‐affinity competitors. Hyperpolarized LLS allow one to decrease both protein and ligand concentrations to micromolar levels and to significantly increase sample throughput.
ACS Photonics | 2015
Andrii Rogov; Marie Irondelle; Fernanda Ramos Gomes; Julia Bode; Davide Staedler; Solène Passemard; Sébastien Courvoisier; Yasuaki Yamamoto; François Waharte; Daniel Ciepielewski; Philippe Rideau; Sandrine Gerber-Lemaire; Frauke Alves; Jean Salamero; Luigi Bonacina; Jean-Pierre Wolf
We investigate the use of bismuth ferrite (BFO) nanoparticles for tumor tissue labeling in combination with infrared multiphoton excitation at 1250 nm. We report the efficient and simultaneous generation of second- and third-harmonic signals by the nanoparticles. On this basis, we set up a novel imaging protocol based on the co-localization of the two harmonic signals and demonstrate its benefits in terms of increased selectivity against endogenous background sources in tissue samples. Finally, we discuss the use of BFO nanoparticles as mapping reference structures for correlative light–electron microscopy.
Journal of Applied Physics | 2014
Sebastian Schwung; Andrii Rogov; Gareth Clarke; Céline Joulaud; Thibaud Magouroux; Davide Staedler; Solène Passemard; Thomas Jüstel; Laurent Badie; Christine Galez; Jean-Pierre Wolf; Yuri Volkov; Adriele Prina-Mello; Sandrine Gerber-Lemaire; Daniel Rytz; Yannick Mugnier; Luigi Bonacina; Ronan Le Dantec
Second Harmonic Generation (SHG) from BiFeO3 nanocrystals is investigated for the first time to determine their potential as biomarkers for multiphoton imaging. Nanocrystals are produced by an auto-combustion method with 2-amino-2-hydroxymethyl-propane-1,3-diol as a fuel. Stable colloidal suspensions with mean particle diameters in the range 100–120 nm are then obtained after wet-milling and sonication steps. SHG properties are determined using two complementary experimental techniques, Hyper Rayleigh Scattering and nonlinear polarization microscopy. BiFeO3 shows a very high second harmonic efficiency with an averaged 〈d〉 coefficient of 79 ± 12 pm/V. From the nonlinear polarization response of individual nanocrystals, relative values of the independent dij coefficients are also determined and compared with recent theoretical and experimental studies. Additionally, the particles show a moderate magnetic response, which is attributed to γ-Fe2O3 impurities. A combination of high nonlinear optical efficiency and magnetic response within the same particle is of great interest for future bio-imaging and diagnostic applications.
Nanomedicine: Nanotechnology, Biology and Medicine | 2015
Davide Staedler; Solène Passemard; Thibaud Magouroux; Andrii Rogov; Ciaran Manus Maguire; Bashir M. Mohamed; Sebastian Schwung; Daniel Rytz; Thomas Jüstel; Stéphanie Hwu; Yannick Mugnier; Ronan Le Dantec; Yuri Volkov; Sandrine Gerber-Lemaire; Adriele Prina-Mello; Luigi Bonacina; Jean-Pierre Wolf
UNLABELLED Bismuth Ferrite (BFO) nanoparticles (BFO-NP) display interesting optical (nonlinear response) and magnetic properties which make them amenable for bio-oriented diagnostic applications as intra- and extra membrane contrast agents. Due to the relatively recent availability of this material in well dispersed nanometric form, its biocompatibility was not known to date. In this study, we present a thorough assessment of the effects of in vitro exposure of human adenocarcinoma (A549), lung squamous carcinoma (NCI-H520), and acute monocytic leukemia (THP-1) cell lines to uncoated and poly(ethylene glycol)-coated BFO-NP in the form of cytotoxicity, haemolytic response and biocompatibility. Our results support the attractiveness of the functional-BFO towards biomedical applications focused on advanced diagnostic imaging. FROM THE CLINICAL EDITOR Bismuth Ferrite nanoparticles (BFO-NP) have been recently successfully introduced as photodynamic tools and imaging probes. However, how these nanoparticles interact with various cells at the cellular level remains poorly understood. In this study, the authors performed in vitro experiments to assess the effects of uncoated and PEG-coated BFO-NP in the form of cytotoxicity, haemolytic response and biocompatibility.
Bioorganic & Medicinal Chemistry Letters | 2013
Solène Passemard; Davide Staedler; Lucia Učňová; Guillaume Stéphane Schneiter; Phally Kong; Luigi Bonacina; Lucienne Juillerat-Jeanneret; Sandrine Gerber-Lemaire
A straightforward route is proposed for the multi-gram scale synthesis of heterobifunctional poly(ethylene glycol) (PEG) oligomers containing combination of triethyloxysilane extremity for surface modification of metal oxides and amino or azido active end groups for further functionalization. The suitability of these PEG derivatives to be conjugated to nanomaterials was shown by pegylation of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles (NPs), followed by functionalization with small peptide ligands for biomedical applications.
ACS Nano | 2017
Laurence Dubreil; Isabelle Leroux; Mireille Ledevin; Cindy Schleder; Lydie Lagalice; Claire Lovo; Romain Fleurisson; Solène Passemard; Vasyl Kilin; Sandrine Gerber-Lemaire; Marie-Anne Colle; Luigi Bonacina; Karl Rouger
In order to assess the therapeutic potential of cell-based strategies, it is of paramount importance to elaborate and validate tools for monitoring the behavior of injected cells in terms of tissue dissemination and engraftment properties. Here, we apply bismuth ferrite harmonic nanoparticles (BFO HNPs) to in vitro expanded human skeletal muscle-derived stem cells (hMuStem cells), an attractive therapeutic avenue for patients suffering from Duchenne muscular dystrophy (DMD). We demonstrate the possibility of stem cell labeling with HNPs. We also show that the simultaneous acquisition of second- and third-harmonic generation (SHG and THG) from BFO HNPs helps separate their response from tissue background, with a net increase in imaging selectivity, which could be particularly important in pathologic context that is defined by a highly remodelling tissue. We demonstrate the possibility of identifying <100 nm HNPs in depth of muscle tissue at more than 1 mm from the surface, taking full advantage of the extended imaging penetration depth allowed by multiphoton microscopy in the second near-infrared window (NIR-II). Based on this successful assessment, we monitor over 14 days any modification on proliferation and morphology features of hMuStem cells upon exposure to PEG-coated BFO HNPs at different concentrations, revealing their high biocompatibility. Successively, we succeed in detecting individual HNP-labeled hMuStem cells in skeletal muscle tissue after their intramuscular injection.
Nanoscale | 2014
Davide Staedler; Thibaud Magouroux; Solène Passemard; Sebastian Schwung; Marc Dubled; Guillaume Stéphane Schneiter; Daniel Rytz; Sandrine Gerber-Lemaire; Luigi Bonacina; Jean-Pierre Wolf
A novel bio-photonics approach based on the nonlinear optical process of second harmonic generation by non-centrosymmetric nanoparticles is presented and demonstrated on malignant human cell lines. The proposed method allows to directly interact with DNA in absence of photosensitizing molecules, to enable independent imaging and therapeutic modalities switching between the two modes of operation by simply tuning the excitation laser wavelength, and to avoid any risk of spontaneous activation by any natural or artificial light source. ∗To whom correspondence should be addressed †Institute of Chemical Sciences and Engineering, EPFL, CH-1015, Lausanne, Switzerland ‡GAP-Biophotonics, Université de Genève, 22 chemin de Pinchat, CH-1211 Genève 4, Switzerland ¶FEE Gmbh, Struthstrasse 2, 55743 Idar-Oberstein, Germany §SYMME, Université de Savoie, BP 80439, 74944, Annecy Le Vieux Cedex, France ‖Contributed equally to this work. 1 ar X iv :1 30 6. 64 87 v1 [ ph ys ic s. bi oph ] 2 7 Ju n 20 13 We demonstrate here a novel diagnostic and therapeutic (theranostic) protocol based on the nonlinear optical process of non phase-matched second harmonic (SH) generation by non-centrosymmetric nanoparticles, referred to in the following as harmonic nanoparticles (HNPs).1,2 To date, the capability of these recently introduced nanometric probes of doubling any incoming frequency has not been employed for therapeutic use, although it presents several straightforward advantages, including i) the possibility to directly interact with DNA of malignant cells in absence of photosensitizing molecules, ii) fully independent access to imaging and therapeutic modalities, and iii) complete absence of risk of spontaneous activation by natural or artificial light sources other than pulsed femtosecond lasers. Given the unconstrained tunability of the HNPs nonlinear conversion process, this approach can be extended to selectively photo-activate molecules at the surface or in the vicinity of HNPs to further diversify the prospective therapeutic action.3 Here we show that by tuning the frequency of ultrashort laser pulses from infrared (IR) to visible (both harmless), SH generation leads respectively to diagnostics (imaging) and therapy (phototoxicity). Specifically, we report in situ generation of deep ultraviolet (DUV) radiation (270 nm) in human-derived lung cancer cells treated with bismuth ferrite (BiFeO3, BFO) HNPs upon pulsed laser irradiation in the visible spectrum, at 540 nm. We observe and quantify the appearance of double-strand breaks (DSBs) in the DNA and cell apoptosis, in the area of the laser beam. We show that DNA damages are dependent on irradiation-time, laser intensity, and NP concentration. We observe that apoptosis and genotoxic effects are only observed when visible light excitation is employed, being completely absent when IR excitation is used for imaging. HNPs, a family of NPs specifically conceived for multi-photon imaging, were introduced in 2005 for complementing fluorescence imaging labels.1,4,5 Although comparatively less bright than quantum dots, HNPs possess a series of advantageous optical properties, including complete absence of bleaching and blinking,1,6 spectrally narrow emission bands, fully coherent response,7–9 ,and UV to IR excitation wavelength tunability.10,11 These unique characteristics have been recently exploited in demanding bio-imaging applications12 including regenerative research.13 The possibility of working with long wavelengths presents clear advantages in terms of tissue pene-A biophotonics approach based on the nonlinear optical process of second harmonic generation is presented and demonstrated on malignant human cell lines labelled by harmonic nanoparticles. The method enables independent imaging and therapeutic action, selecting each modality by simply tuning the excitation laser wavelength from infrared to visible. In particular, the generation of deep ultraviolet radiation at 270 nm allows direct interaction with nuclear DNA in the absence of photosensitizing molecules.
Xenotransplantation | 2016
Redouan Mahou; Solène Passemard; Michele Carvello; Alessandra Petrelli; François Noverraz; Sandrine Gerber-Lemaire; Christine Wandrey
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Biomacromolecules | 2017
Solène Passemard; Luca Szabó; François Noverraz; Elisa Montanari; Carmen Gonelle-Gispert; Leo H. Buhler; Christine Wandrey; Sandrine Gerber-Lemaire
The production of hydrogel microspheres (MS) for cell immobilization, maintaining the favorable properties of alginate gels but presenting enhanced performance in terms of in vivo durability and physical properties, is desirable to extend the therapeutic potential of cell transplantation. A novel type of hydrogel MS was produced by straightforward functionalization of sodium alginate (Na-alg) with heterotelechelic poly(ethylene glycol) (PEG) derivatives equipped with either end thiol or 1,2-dithiolane moieties. Activation of the hydroxyl moieties of the alginate backbone in the form of imidazolide intermediate allowed for fast conjugation to PEG oligomers through a covalent carbamate linkage. Evaluation of the modified alginates for the preparation of MS combining fast ionic gelation ability of the alginate carboxylate groups and slow covalent cross-linking provided by the PEG-end functionalities highlighted the influence of the chemical composition of the PEG-grafting units on the physical characteristics of the MS. The mechanical properties of the MS (resistance and shape recovery) and durability of PEG-grafted alginates in physiological environment can be adjusted by varying the nature of the end functionalities and the length of the PEG chains. In vitro cell microencapsulation studies and preliminary in vivo assessment suggested the potential of these hydrogels for cell transplantation applications.