Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Solomon K. Musani is active.

Publication


Featured researches published by Solomon K. Musani.


Nature | 2011

The landscape of recombination in African Americans

Anjali G. Hinch; Arti Tandon; Nick Patterson; Yunli Song; Nadin Rohland; C. Palmer; Gary K. Chen; Kai Wang; Sarah G. Buxbaum; Ermeg L. Akylbekova; Melinda C. Aldrich; Christine B. Ambrosone; Christopher I. Amos; Elisa V. Bandera; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Cathryn H. Bock; Eric Boerwinkle; Qiuyin Cai; Neil E. Caporaso; Graham Casey; L. Adrienne Cupples; Sandra L. Deming; W. Ryan Diver; Jasmin Divers; Myriam Fornage; Elizabeth M. Gillanders; Joseph T. Glessner; Curtis C. Harris

Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P value < 10−245). We identify a 17-base-pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of PRDM9 alleles common in West Africans and rare in Europeans. Sites of this motif are predicted to be risk loci for disease-causing genomic rearrangements in individuals carrying these alleles. More generally, this map provides a resource for research in human genetic variation and evolution.


Human Heredity | 2007

Detection of Gene × Gene Interactions in Genome-Wide Association Studies of Human Population Data

Solomon K. Musani; Daniel Shriner; Nianjun Liu; Rui Feng; Christopher S. Coffey; Nengjun Yi; Hemant K. Tiwari; David B. Allison

Empirical evidence supporting the commonality of gene × gene interactions, coupled with frequent failure to replicate results from previous association studies, has prompted statisticians to develop methods to handle this important subject. Nonparametric methods have generated intense interest because of their capacity to handle high-dimensional data. Genome-wide association analysis of large-scale SNP data is challenging mathematically and computationally. In this paper, we describe major issues and questions arising from this challenge, along with methodological implications. Data reduction and pattern recognition methods seem to be the new frontiers in efforts to detect gene × gene interactions comprehensively. Currently, there is no single method that is recognized as the ‘best’ for detecting, characterizing, and interpreting gene × gene interactions. Instead, a combination of approaches with the aim of balancing their specific strengths may be the optimal approach to investigate gene × gene interactions in human data.


Human Molecular Genetics | 2011

Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

Ervin R. Fox; J. Hunter Young; Yali Li; Albert W. Dreisbach; Brendan J. Keating; Solomon K. Musani; Kiang Liu; Alanna C. Morrison; Santhi K. Ganesh; Abdullah Kutlar; Josef F. Polak; Richard R. Fabsitz; Daniel L. Dries; Deborah N. Farlow; Susan Redline; Adebowale Adeyemo; Joel N. Hirschorn; Yan V. Sun; Sharon B. Wyatt; Alan D. Penman; Walter Palmas; Jerome I. Rotter; Raymond R. Townsend; Ayo Doumatey; Bamidele O. Tayo; Thomas H. Mosley; Helen N. Lyon; Sun J. Kang; Charles N. Rotimi; Richard S. Cooper

The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.


Journal of Experimental Medicine | 2008

Macaques vaccinated with live-attenuated SIV control replication of heterologous virus

Matthew R. Reynolds; Andrea M. Weiler; Kim L. Weisgrau; Shari M. Piaskowski; Jessica Furlott; Jason T. Weinfurter; Masahiko Kaizu; Taeko Soma; Enrique J. León; Caitlin E. MacNair; Dan P. Leaman; Michael B. Zwick; Emma Gostick; Solomon K. Musani; David A. Price; Thomas C. Friedrich; Eva G. Rakasz; Nancy A. Wilson; Adrian B. McDermott; Rosanne Boyle; David B. Allison; Dennis R. Burton; Wayne C. Koff; David I. Watkins

An effective AIDS vaccine will need to protect against globally diverse isolates of HIV. To address this issue in macaques, we administered a live-attenuated simian immunodeficiency virus (SIV) vaccine and challenged with a highly pathogenic heterologous isolate. Vaccinees reduced viral replication by ∼2 logs between weeks 2–32 (P ≤ 0.049) postchallenge. Remarkably, vaccinees expressing MHC-I (MHC class I) alleles previously associated with viral control completely suppressed acute phase replication of the challenge virus, implicating CD8+ T cells in this control. Furthermore, transient depletion of peripheral CD8+ lymphocytes in four vaccinees during the chronic phase resulted in an increase in virus replication. In two of these animals, the recrudescent virus population contained only the vaccine strain and not the challenge virus. Alarmingly, however, we found evidence of recombinant viruses emerging in some of the vaccinated animals. This finding argues strongly against an attenuated virus vaccine as a solution to the AIDS epidemic. On a more positive note, our results suggest that MHC-I–restricted CD8+ T cells contribute to the protection induced by the live-attenuated SIV vaccine and demonstrate that vaccine-induced CD8+ T cell responses can control replication of heterologous challenge viruses.


PLOS Genetics | 2011

Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium

Bogdan Pasaniuc; Noah Zaitlen; Guillaume Lettre; Gary K. Chen; Arti Tandon; W.H. Linda Kao; Ingo Ruczinski; Myriam Fornage; David S. Siscovick; Xiaofeng Zhu; Emma K. Larkin; Leslie A. Lange; L. Adrienne Cupples; Qiong Yang; Ermeg L. Akylbekova; Solomon K. Musani; Jasmin Divers; Joe Mychaleckyj; Mingyao Li; George J. Papanicolaou; Robert C. Millikan; Christine B. Ambrosone; Esther M. John; Leslie Bernstein; Wei Zheng; Jennifer J. Hu; Regina G. Ziegler; Sarah J. Nyante; Elisa V. Bandera; Sue A. Ingles

While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.


PLOS Genetics | 2011

Genome-wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT).

Alex P. Reiner; Guillaume Lettre; Michael A. Nalls; Santhi K. Ganesh; Rasika A. Mathias; Melissa A. Austin; Eric Dean; Sampath Arepalli; Angela Britton; Zhao Chen; David Couper; J. David Curb; Charles B. Eaton; Myriam Fornage; Struan F. A. Grant; Tamara B. Harris; Dena Hernandez; Naoyuki Kamatini; Brendan J. Keating; Michiaki Kubo; Andrea Z. LaCroix; Leslie A. Lange; Simin Liu; Kurt Lohman; Yan Meng; Emile R. Mohler; Solomon K. Musani; Yusuke Nakamura; Christopher J. O'Donnell; Yukinori Okada

Total white blood cell (WBC) and neutrophil counts are lower among individuals of African descent due to the common African-derived “null” variant of the Duffy Antigen Receptor for Chemokines (DARC) gene. Additional common genetic polymorphisms were recently associated with total WBC and WBC sub-type levels in European and Japanese populations. No additional loci that account for WBC variability have been identified in African Americans. In order to address this, we performed a large genome-wide association study (GWAS) of total WBC and cell subtype counts in 16,388 African-American participants from 7 population-based cohorts available in the Continental Origins and Genetic Epidemiology Network. In addition to the DARC locus on chromosome 1q23, we identified two other regions (chromosomes 4q13 and 16q22) associated with WBC in African Americans (P<2.5×10−8). The lead SNP (rs9131) on chromosome 4q13 is located in the CXCL2 gene, which encodes a chemotactic cytokine for polymorphonuclear leukocytes. Independent evidence of the novel CXCL2 association with WBC was present in 3,551 Hispanic Americans, 14,767 Japanese, and 19,509 European Americans. The index SNP (rs12149261) on chromosome 16q22 associated with WBC count is located in a large inter-chromosomal segmental duplication encompassing part of the hydrocephalus inducing homolog (HYDIN) gene. We demonstrate that the chromosome 16q22 association finding is most likely due to a genotyping artifact as a consequence of sequence similarity between duplicated regions on chromosomes 16q22 and 1q21. Among the WBC loci recently identified in European or Japanese populations, replication was observed in our African-American meta-analysis for rs445 of CDK6 on chromosome 7q21 and rs4065321 of PSMD3-CSF3 region on chromosome 17q21. In summary, the CXCL2, CDK6, and PSMD3-CSF3 regions are associated with WBC count in African American and other populations. We also demonstrate that large inter-chromosomal duplications can result in false positive associations in GWAS.


PLOS Genetics | 2011

Genome-wide association studies of the PR interval in African Americans

J. Gustav Smith; Jared W. Magnani; C. Palmer; Elsayed Z. Soliman; Solomon K. Musani; Kathleen F. Kerr; Renate B. Schnabel; Steven A. Lubitz; Nona Sotoodehnia; Susan Redline; Arne Pfeufer; Martina Müller; Daniel S. Evans; Michael A. Nalls; Yongmei Liu; Anne B. Newman; Alan B. Zonderman; Michele K. Evans; Rajat Deo; Patrick T. Ellinor; Dina N. Paltoo; Christopher Newton-Cheh; Emelia J. Benjamin; Reena Mehra; Alvaro Alonso; Susan R. Heckbert; Ervin R. Fox

The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p<2.5×10−8) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta  = 5.1 msec per minor allele, 95% CI  = 4.1–6.1, p = 3×10−23). This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8–3.0, p = 3×10−16) in individuals of European ancestry (n = 14,042), but with a smaller effect size (p for heterogeneity <0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples and identify an association signal at one of these loci that is more strongly associated with PR interval in African Americans than in Europeans.


Journal of Virology | 2008

Patterns of CD8+ Immunodominance May Influence the Ability of Mamu-B*08-Positive Macaques To Naturally Control Simian Immunodeficiency Virus SIVmac239 Replication

John T. Loffredo; Alex T. Bean; Dominic R. Beal; Enrique J. León; Gemma E. May; Shari M. Piaskowski; Jessica Furlott; Jason S. Reed; Solomon K. Musani; Eva G. Rakasz; Thomas C. Friedrich; Nancy A. Wilson; David B. Allison; David I. Watkins

ABSTRACT Certain major histocompatibility complex (MHC) class I alleles are strongly associated with control of human immunodeficiency virus and simian immunodeficiency virus (SIV). CD8+ T cells specific for epitopes restricted by these molecules may be particularly effective. Understanding how CD8+ T cells contribute to control of viral replication should yield important insights for vaccine design. We have recently identified an Indian rhesus macaque MHC class I allele, Mamu-B*08, associated with elite control and low plasma viremia after infection with the pathogenic isolate SIVmac239. Here, we infected four Mamu-B*08-positive macaques with SIVmac239 to investigate why some of these macaques control viral replication. Three of the four macaques controlled SIVmac239 replication with plasma virus concentrations below 20,000 viral RNA copies/ml at 20 weeks postinfection; two of four macaques were elite controllers (ECs). Interestingly, two of the four macaques preserved their CD4+ memory T lymphocytes during peak viremia, and all four recovered their CD4+ memory T lymphocytes in the chronic phase of infection. Mamu-B*08-restricted CD8+ T-cell responses dominated the acute phase and accounted for 23.3% to 59.6% of the total SIV-specific immune responses. Additionally, the ECs mounted strong and broad CD8+ T-cell responses against several epitopes in Vif and Nef. Mamu-B*08-specific CD8+ T cells accounted for the majority of mutations in the virus at 18 weeks postinfection. Interestingly, patterns of viral variation in Nef differed between the ECs and the other two macaques. Natural containment of AIDS virus replication in Mamu-B*08-positive macaques may, therefore, be related to a combination of immunodominance and viral escape from CD8+ T-cell responses.


Human Molecular Genetics | 2011

Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5p13: contributions from the CARe consortium

Xiaofeng Zhu; Jeffery Hunter Young; Ervin R. Fox; Brendan J. Keating; Nora Franceschini; Sunjung Kang; Bamidele O. Tayo; Adebowale Adeyemo; Yun V. Sun; Yali Li; Alanna C. Morrison; Christopher Newton-Cheh; Kiang Liu; Santhi K. Ganesh; Abdullah Kutlar; Albert W. Dreisbach; Sharon B. Wyatt; Joseph F. Polak; Walter Palmas; Solomon K. Musani; Herman A. Taylor; Richard R. Fabsitz; Raymond R. Townsend; Daniel L. Dries; Joseph T. Glessner; Charleston W. K. Chiang; Thomas H. Mosley; Sharon L.R. Kardia; David Curb; Joel N. Hirschhorn

Admixture mapping based on recently admixed populations is a powerful method to detect disease variants with substantial allele frequency differences in ancestral populations. We performed admixture mapping analysis for systolic blood pressure (SBP) and diastolic blood pressure (DBP), followed by trait-marker association analysis, in 6303 unrelated African-American participants of the Candidate Gene Association Resource (CARe) consortium. We identified five genomic regions (P< 0.001) harboring genetic variants contributing to inter-individual BP variation. In follow-up association analyses, correcting for all tests performed in this study, three loci were significantly associated with SBP and one significantly associated with DBP (P< 10(-5)). Further analyses suggested that six independent single-nucleotide polymorphisms (SNPs) contributed to the phenotypic variation observed in the admixture mapping analysis. These six SNPs were examined for replication in multiple, large, independent studies of African-Americans [Womens Health Initiative (WHI), Maywood, Genetic Epidemiology Network of Arteriopathy (GENOA) and Howard University Family Study (HUFS)] as well as one native African sample (Nigerian study), with a total replication sample size of 11 882. Meta-analysis of the replication set identified a novel variant (rs7726475) on chromosome 5 between the SUB1 and NPR3 genes, as being associated with SBP and DBP (P< 0.0015 for both); in meta-analyses combining the CARe samples with the replication data, we observed P-values of 4.45 × 10(-7) for SBP and 7.52 × 10(-7) for DBP for rs7726475 that were significant after accounting for all the tests performed. Our study highlights that admixture mapping analysis can help identify genetic variants missed by genome-wide association studies because of drastically reduced number of tests in the whole genome.


PLOS Genetics | 2011

Identification, replication, and fine-mapping of Loci associated with adult height in individuals of african ancestry.

Amidou N'Diaye; Gary K. Chen; C. Palmer; Bing Ge; Bamidele O. Tayo; Rasika A. Mathias; Jingzhong Ding; Michael A. Nalls; Adebowale Adeyemo; Véronique Adoue; Christine B. Ambrosone; Larry D. Atwood; Elisa V. Bandera; Lewis C. Becker; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Eric Boerwinkle; Angela Britton; Graham Casey; Stephen J. Chanock; Ellen W. Demerath; Sandra L. Deming; W. Ryan Diver; Caroline S. Fox; Tamara B. Harris; Dena Hernandez; Jennifer J. Hu; Sue A. Ingles; Esther M. John

Adult height is a classic polygenic trait of high heritability (h 2 ∼0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ∼10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10−12 and 2p14-rs4315565, P = 1.2×10−8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10−4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits.

Collaboration


Dive into the Solomon K. Musani's collaboration.

Top Co-Authors

Avatar

Ervin R. Fox

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Herman A. Taylor

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Aurelian Bidulescu

Morehouse School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James G. Wilson

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jiankang Liu

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adolfo Correa

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mario Sims

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas H. Mosley

University of Mississippi Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge