Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Solveig K. Sieberts is active.

Publication


Featured researches published by Solveig K. Sieberts.


PLOS Biology | 2008

Mapping the Genetic Architecture of Gene Expression in Human Liver

Eric E. Schadt; Cliona Molony; Eugene Chudin; Ke-Ke Hao; Xia Yang; Pek Yee Lum; Andrew Kasarskis; Bin Zhang; Susanna Wang; Christine Suver; Jun Zhu; Joshua Millstein; Solveig K. Sieberts; John Lamb; Debraj GuhaThakurta; Jonathan Derry; John D. Storey; Iliana Avila-Campillo; Mark Kruger; Jason M. Johnson; Carol A. Rohl; Atila van Nas; Margarete Mehrabian; Thomas A. Drake; Aldons J. Lusis; Ryan Smith; F. Peter Guengerich; Stephen C. Strom; Erin G. Schuetz; Thomas H. Rushmore

Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process.


Nature Genetics | 2005

An integrative genomics approach to infer causal associations between gene expression and disease

Eric E. Schadt; John Lamb; Xia Yang; Jun Zhu; Steve Edwards; Debraj GuhaThakurta; Solveig K. Sieberts; Stephanie A. Monks; Marc L. Reitman; Chunsheng Zhang; Pek Yee Lum; Amy Leonardson; Rolf Thieringer; Joseph M. Metzger; Liming Yang; John Castle; Haoyuan Zhu; Shera F Kash; Thomas A. Drake; Alan B. Sachs; Aldons J. Lusis

A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene–perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.


Nature | 2008

Variations in DNA elucidate molecular networks that cause disease

Yanqing Chen; Jun Zhu; Pek Yee Lum; Xia Yang; Shirly Pinto; Douglas J. MacNeil; Chunsheng Zhang; John Lamb; Stephen Edwards; Solveig K. Sieberts; Amy Leonardson; Lawrence W. Castellini; Susanna Wang; Marie-France Champy; Bin Zhang; Valur Emilsson; Sudheer Doss; Anatole Ghazalpour; Steve Horvath; Thomas A. Drake; Aldons J. Lusis; Eric E. Schadt

Identifying variations in DNA that increase susceptibility to disease is one of the primary aims of genetic studies using a forward genetics approach. However, identification of disease-susceptibility genes by means of such studies provides limited functional information on how genes lead to disease. In fact, in most cases there is an absence of functional information altogether, preventing a definitive identification of the susceptibility gene or genes. Here we develop an alternative to the classic forward genetics approach for dissecting complex disease traits where, instead of identifying susceptibility genes directly affected by variations in DNA, we identify gene networks that are perturbed by susceptibility loci and that in turn lead to disease. Application of this method to liver and adipose gene expression data generated from a segregating mouse population results in the identification of a macrophage-enriched network supported as having a causal relationship with disease traits associated with metabolic syndrome. Three genes in this network, lipoprotein lipase (Lpl), lactamase β (Lactb) and protein phosphatase 1-like (Ppm1l), are validated as previously unknown obesity genes, strengthening the association between this network and metabolic disease traits. Our analysis provides direct experimental support that complex traits such as obesity are emergent properties of molecular networks that are modulated by complex genetic loci and environmental factors.


Mammalian Genome | 2007

Moving toward a system genetics view of disease.

Solveig K. Sieberts; Eric E. Schadt

Testing hundreds of thousands of DNA markers in human, mouse, and other species for association to complex traits like disease is now a reality. However, information on how variations in DNA impact complex physiologic processes flows through transcriptional and other molecular networks. In other words, DNA variations impact complex diseases through the perturbations they cause to transcriptional and other biological networks, and these molecular phenotypes are intermediate to clinically defined disease. Because it is also now possible to monitor transcript levels in a comprehensive fashion, integrating DNA variation, transcription, and phenotypic data has the potential to enhance identification of the associations between DNA variation and diseases like obesity and diabetes, as well as characterize those parts of the molecular networks that drive these diseases. Toward that end, we review methods for integrating expression quantitative trait loci (eQTLs), gene expression, and clinical data to infer causal relationships among gene expression traits and between expression and clinical traits. We further describe methods to integrate these data in a more comprehensive manner by constructing coexpression gene networks that leverage pairwise gene interaction data to represent more general relationships. To infer gene networks that capture causal information, we describe a Bayesian algorithm that further integrates eQTLs, expression, and clinical phenotype data to reconstruct whole-gene networks capable of representing causal relationships among genes and traits in the network. These emerging network approaches, aimed at processing high-dimensional biological data by integrating data from multiple sources, represent some of the first steps in statistical genetics to identify multiple genetic perturbations that alter the states of molecular networks and that in turn push systems into disease states. Evolving statistical procedures that operate on networks will be critical to extracting information related to complex phenotypes like disease, as research goes beyond a single-gene focus. The early successes achieved with the methods described herein suggest that these more integrative genomics approaches to dissecting disease traits will significantly enhance the identification of key drivers of disease beyond what could be achieved by genetic association studies alone.


Genome Research | 2011

A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort

Danielle M. Greenawalt; Radu Dobrin; Eugene Chudin; Ida J. Hatoum; Christine Suver; John Beaulaurier; Bin Zhang; Victor M. Castro; Jun Zhu; Solveig K. Sieberts; Susanna Wang; Cliona Molony; Steven B. Heymsfield; Daniel M. Kemp; Marc L. Reitman; Pek Yee Lum; Eric E. Schadt; Lee M. Kaplan

To map the genetics of gene expression in metabolically relevant tissues and investigate the diversity of expression SNPs (eSNPs) in multiple tissues from the same individual, we collected four tissues from approximately 1000 patients undergoing Roux-en-Y gastric bypass (RYGB) and clinical traits associated with their weight loss and co-morbidities. We then performed high-throughput genotyping and gene expression profiling and carried out a genome-wide association analyses for more than 100,000 gene expression traits representing four metabolically relevant tissues: liver, omental adipose, subcutaneous adipose, and stomach. We successfully identified 24,531 eSNPs corresponding to about 10,000 distinct genes. This represents the greatest number of eSNPs identified to our knowledge by any study to date and the first study to identify eSNPs from stomach tissue. We then demonstrate how these eSNPs provide a high-quality disease map for each tissue in morbidly obese patients to not only inform genetic associations identified in this cohort, but in previously published genome-wide association studies as well. These data can aid in elucidating the key networks associated with morbid obesity, response to RYGB, and disease as a whole.


Nature Neuroscience | 2016

Gene expression elucidates functional impact of polygenic risk for schizophrenia.

Menachem Fromer; Panos Roussos; Solveig K. Sieberts; Jessica S. Johnson; David H. Kavanagh; Thanneer M. Perumal; Douglas M. Ruderfer; Edwin C. Oh; Aaron Topol; Hardik Shah; Lambertus Klei; Robin Kramer; Dalila Pinto; Zeynep H. Gümüş; A. Ercument Cicek; Kristen Dang; Andrew Browne; Cong Lu; Lu Xie; Ben Readhead; Eli A. Stahl; Jianqiu Xiao; Mahsa Parvizi; Tymor Hamamsy; John F. Fullard; Ying-Chih Wang; Milind Mahajan; Jonathan Derry; Joel T. Dudley; Scott E. Hemby

Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.


American Journal of Human Genetics | 2002

Relationship Inference from Trios of Individuals, in the Presence of Typing Error

Solveig K. Sieberts; Ellen M. Wijsman; E. A. Thompson

Misspecification of relationships and of genotype data can cause problems in linkage analyses based on genome-scan data. Previous reports have focused on pairwise relationships and a simple error model. This article considers the increased information available from the joint analysis of trios of individuals, integrating this analysis with an error model that allows for the most common genotyping errors. Given observed marker phenotypes in a genome scan, computational methods are outlined both for likelihoods of relationships and for the posterior probabilities of underlying genotypes. The methods are applied to examples from two real data sets: one has been previously well analyzed, and, hence, Mendelian inconsistencies have been removed; the other typifies the pedigree and genotype errors encountered in the initial analyses of a study. It is demonstrated that the coupling of relationship inference and error detection is quite effective, that the error model is computationally practical, and that data on a third relative can often clarify relationships.


Nature Genetics | 2012

Developing predictive molecular maps of human disease through community-based modeling

Jonathan Derry; Lara M. Mangravite; Christine Suver; Matthew D. Furia; David Henderson; Xavier Schildwachter; Brian M. Bot; Jonathan Izant; Solveig K. Sieberts; Michael R. Kellen; Stephen H. Friend

1. The failure rate for drugs in clinical development is still startlingly high despite unprecedented investment in RD many compounds are shown to be safe and to engage the intended target but do not improve the primary indication. This failure stems from the simplistic ways in which we have historically studied potential drug targets for complex diseases and indicates a need for more innovative approaches to identify causal relationships between molecular entities and disease. Biology is rapidly changing and becoming a technology and data-intensive science with the development of new instrumentation to measure various molecular states in greater detail. Herein lays an opportunity to transform our understanding of the molecular underpinnings of disease and develop modeling frameworks that can describe complex systems and predict their behavior. Without these models acting as maps, biologists risk drowning in an ever-growing sea of data. This vision for biology, to use large-scale data to model disease, reflects parallel developments in other scientific disciplines: for example, modeling future trends in climate based on complex meteorological information in atmospheric science. The term fourth paradigm has been coined for this “data intensive” science discovery to distinguish it from empiric, theoretical and computational approaches 3


Nature Neuroscience | 2017

An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome

Bernard Ng; Charles C. White; Hans-Ulrich Klein; Solveig K. Sieberts; Cristin McCabe; Ellis Patrick; Jishu Xu; Lei Yu; Chris Gaiteri; David A. Bennett; Philip L. De Jager

We report a multi-omic resource generated by applying quantitative trait locus (xQTL) analyses to RNA sequence, DNA methylation and histone acetylation data from the dorsolateral prefrontal cortex of 411 older adults who have all three data types. We identify SNPs significantly associated with gene expression, DNA methylation and histone modification levels. Many of these SNPs influence multiple molecular features, and we demonstrate that SNP effects on RNA expression are fully mediated by epigenetic features in 9% of these loci. Further, we illustrate the utility of our new resource, xQTL Serve, by using it to prioritize the cell type(s) most affected by an xQTL. We also reanalyze published genome wide association studies using an xQTL-weighted analysis approach and identify 18 new schizophrenia and 2 new bipolar susceptibility variants, which is more than double the number of loci that can be discovered with a larger blood-based expression eQTL resource.


American Journal of Epidemiology | 2012

Integrating Genetic Association, Genetics of Gene Expression, and Single Nucleotide Polymorphism Set Analysis to Identify Susceptibility Loci for Type 2 Diabetes Mellitus

Danielle M. Greenawalt; Solveig K. Sieberts; Marilyn C. Cornelis; Cynthia J. Girman; Hua Zhong; Xia Yang; Justin Guinney; Lu Qi; Frank B. Hu

Large-scale genome-wide association studies (GWAS) have identified over 40 genomic regions significantly associated with type 2 diabetes mellitus. However, GWAS results are not always straightforward to interpret, and linking these loci to meaningful disease etiology is often difficult without extensive follow-up studies. The authors expanded on previously reported type 2 diabetes mellitus GWAS from the nested case-control studies of 2 prospective US cohorts by incorporating expression single nucleotide polymorphism (SNP) information and applying SNP set enrichment analysis to identify sets of SNPs associated with genes that could provide further biologic insight to traditional genome-wide analysis. Using data collected between 1989 and 1994 in these previous studies to form a nested case-control study, the authors found that 3 of the most significantly associated SNPs to type 2 diabetes mellitus in their study are expression SNPs to the lymphocyte antigen 75 gene (LY75), the ubiquitin-specific peptidase 36 gene (USP36), and the phosphatidylinositol transfer protein, cytoplasmic 1 gene (PITPNC1). SNP set enrichment analysis of the GWAS results identified enrichment for expression SNPs to the macrophage-enriched module and the Gene Ontology (GO) biologic process fat cell differentiation human, which includes the transcription factor 7-like 2 gene (TCF7L2), as well as other type 2 diabetes mellitus-associated genes. Integrating genome-wide association, gene expression, and gene set analysis may provide valuable biologic support for potential type 2 diabetes mellitus susceptibility loci and may be useful in identifying new targets or pathways of interest for the treatment and prevention of type 2 diabetes mellitus.

Collaboration


Dive into the Solveig K. Sieberts's collaboration.

Top Co-Authors

Avatar

Pamela Sklar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Bernie Devlin

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Eric E. Schadt

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda Dobbyn

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Eli A. Stahl

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Laura M. Huckins

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Menachem Fromer

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Panos Roussos

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge