Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Som G. Nanjappa is active.

Publication


Featured researches published by Som G. Nanjappa.


PLOS Pathogens | 2012

Tc17 Cells Mediate Vaccine Immunity against Lethal Fungal Pneumonia in Immune Deficient Hosts Lacking CD4+ T Cells

Som G. Nanjappa; Erika Heninger; Marcel Wüthrich; David J. Gasper; Bruce S. Klein

Vaccines may help reduce the growing incidence of fungal infections in immune-suppressed patients. We have found that, even in the absence of CD4+ T-cell help, vaccine-induced CD8+ T cells persist and confer resistance against Blastomyces dermatitidis and Histoplasma capsulatum. Type 1 cytokines contribute to that resistance, but they also are dispensable. Although the role of T helper 17 cells in immunity to fungi is debated, IL-17 producing CD8+ T cells (Tc17 cells) have not been investigated. Here, we show that Tc17 cells are indispensable in antifungal vaccine immunity in hosts lacking CD4+ T cells. Tc17 cells are induced upon vaccination, recruited to the lung on pulmonary infection, and act non-redundantly in mediating protection in a manner that requires neutrophils. Tc17 cells did not influence type I immunity, nor did the lack of IL-12 signaling augment Tc17 cells, indicating a distinct lineage and function. IL-6 was required for Tc17 differentiation and immunity, but IL-1R1 and Dectin-1 signaling was unexpectedly dispensable. Tc17 cells expressed surface CXCR3 and CCR6, but only the latter was essential in recruitment to the lung. Although IL-17 producing T cells are believed to be short-lived, effector Tc17 cells expressed low levels of KLRG1 and high levels of the transcription factor TCF-1, predicting their long-term survival and stem-cell like behavior. Our work has implications for designing vaccines against fungal infections in immune suppressed patients.


Journal of Clinical Investigation | 2008

Effects of IL-7 on memory CD8+ T cell homeostasis are influenced by the timing of therapy in mice

Som G. Nanjappa; Jane H. Walent; Michel Morre; M. Suresh

IL-7 is integral to the generation and maintenance of CD8(+) T cell memory, and insufficient IL-7 is believed to limit survival and the persistence of memory CD8(+) T cells. Here, we show that during the mouse T cell response to lymphocytic choriomeningitis virus, IL-7 enhanced the number of memory CD8(+) T cells when its administration was restricted to the contraction phase of the response. Likewise, IL-7 administration during the contraction phase of the mouse T cell response to vaccinia virus or a DNA vaccine potentiated antigen-specific CD8(+) memory T cell proliferation and function. Qualitatively, CD8(+) T cells from IL-7-treated mice exhibited superior recall responses and improved viral control. IL-7 treatment during the memory phase stimulated a marked increase in the number of memory CD8(+) T cells, but the effects were transient. IL-7 therapy during contraction of the secondary CD8(+) T cell response also expanded the pool of memory CD8(+) T cells. Collectively, our studies show differential effects of IL-7 on memory CD8(+) T cell homeostasis and underscore the importance of the timing of IL-7 therapy to effectively improve CD8(+) T cell memory and protective immunity. These findings may have implications in the clinical use of IL-7 as an immunotherapeutic agent to bolster vaccine-induced CD8(+) T cell memory.


Blood | 2011

Immunotherapeutic effects of IL-7 during a chronic viral infection in mice

Som G. Nanjappa; Eui Ho Kim; M. Suresh

Viral persistence during chronic viral infections is associated with a progressive loss of T-cell effector function called functional exhaustion. There is therefore a need to develop immunotherapies to remediate the functional deficits of T cells during these infections. We investigated the immunotherapeutic effects of IL-7 during chronic lymphocytic choriomeningitis virus infection in mice. Our results showed that the effects of IL-7 on T cells depend on the viral load, timing, and duration of treatment during the course of the infection. We document that the effectiveness of IL-7 was constrained by high viral load early in the infection, but treatment for at least 3 weeks during declining viral titers mitigated the programmed contraction of CD8 T cells, markedly enhanced the number of high-quality polyfunctional virus-specific CD8 T cells with a nonexhausted phenotype, and accelerated viral control. Mechanistically, the enhancement of CD8 T-cell responses by IL-7 was associated with increased proliferation and induction of Bcl-2, but not with altered levels of PD-1 or Cbl-b. In summary, our results strongly suggest that IL-7 therapy is a potential strategy to bolster the quality and quantity of T-cell responses in patients with chronic viral infections.


Journal of Clinical Investigation | 2012

Protective antifungal memory CD8 + T cells are maintained in the absence of CD4 + T cell help and cognate antigen in mice

Som G. Nanjappa; Erika Heninger; Marcel Wüthrich; Thomas D. Sullivan; Bruce S. Klein

Individuals who are immunocompromised, including AIDS patients with few CD4(+) T cells, are at increased risk for opportunistic fungal infections. The incidence of such infections is increasing worldwide, meaning that the need for antifungal vaccines is increasing. Although CD4(+) T cells play a dominant role in resistance to many pathogenic fungal infections, we have previously shown that vaccination can induce protective antifungal CD8(+) T cell immunity in the absence of CD4(+) T cells. However, it has not been determined whether vaccine-induced antifungal CD8(+) T cell memory can be maintained in the absence of CD4(+) T cell help. Here, we have shown in a mouse model of vaccination against blastomycosis that antifungal memory CD8(+) T cells are maintained in the absence of CD4(+) T cells without loss of numbers or function for at least 6 months and that the cells protect against infection. Using a system that enabled us to induce and track antigen-specific, antifungal CD8(+) T cells, we found that such cells were maintained for at least 5 months upon transfer into naive mice lacking both CD4(+) T cells and persistent fungal antigen. Additionally, fungal vaccination induced a profile of transcription factors functionally linked with persistent memory in CD8(+) T cells. Thus, unlike bacteria and viruses, fungi elicit long-term CD8(+) T cell memory that is maintained without CD4(+) T cell help or persistent antigen. This has implications for the development of novel antifungal vaccine strategies effective in immunocompromised patients.


Journal of Immunology | 2007

Cbl-b Regulates Antigen-Induced TCR Down-Regulation and IFN-γ Production by Effector CD8 T Cells without Affecting Functional Avidity

Mohammed Shamim; Som G. Nanjappa; Anju Singh; Erin H. Plisch; Scott E. LeBlanc; Jane H. Walent; John Svaren; Christine M. Seroogy; M. Suresh

The E3 ubiquitin ligase Cbl-b is a negative regulator of TCR signaling that: 1) sets the activation threshold for T cells; 2) is induced in anergic T cells; and 3) protects against autoimmunity. However, the role of Cbl-b in regulating CD8 T cell activation and functions during physiological T cell responses has not been systematically examined. Using the lymphocytic choriomeningitis virus infection model, we show that Cbl-b deficiency did not significantly affect the clonal expansion of virus-specific CD8 T cells. However, Cbl-b deficiency not only increased the steady-state cell surface expression levels of TCR and CD8 but also reduced Ag-induced down-modulation of cell surface TCR expression by effector CD8 T cells. Diminished Ag-stimulated TCR down-modulation and sustained Ag receptor signaling induced by Cbl-b deficiency markedly augmented IFN-γ production, which is known to require substantial TCR occupancy. By contrast, Cbl-b deficiency minimally affected cell-mediated cytotoxicity, which requires limited engagement of TCRs. Surprisingly, despite elevated expression of CD8 and reduced Ag-induced TCR down-modulation, the functional avidity of Cbl-b-deficient effector CD8 T cells was comparable to that of wild-type effectors. Collectively, these data not only show that Cbl-b-imposed constraint on TCR signaling has differential effects on various facets of CD8 T cell response but also suggest that Cbl-b might mitigate tissue injury induced by the overproduction of IFN-γ by CD8 T cells. These findings have implications in the development of therapies to bolster CD8 T cell function during viral infections or suppress T cell-mediated immunopathology.


Current Opinion in Immunology | 2014

Vaccine immunity against fungal infections

Som G. Nanjappa; Bruce S. Klein

Only a handful of the many fungal species on our planet cause infections in humans. Despite many medical advances, invasive fungal infections have skyrocketed in recent years and pose a growing health problem in both immune-competent and -deficient hosts. Recent strides in our understanding of fungal immunity have raised the prospect that vaccines against fungi can be developed that are effective, safe and able to elicit lasting immunity even in immune deficient individuals. We discuss progress in vaccine development and understanding mechanisms of protection against fungi including in patients with impaired CD4+ T-cell immunity.


PLOS Pathogens | 2013

Structure and function of a fungal adhesin that binds heparin and mimics thrombospondin-1 by blocking T cell activation and effector function.

Tristan Brandhorst; René M. Roy; Marcel Wüthrich; Som G. Nanjappa; Hanna I. Filutowicz; Kevin Galles; Marco Tonelli; Darrell R. McCaslin; Kenneth A. Satyshur; Bruce S. Klein

Blastomyces adhesin-1 (BAD-1) is a 120-kD surface protein on B. dermatitidis yeast. We show here that BAD-1 contains 41 tandem repeats and that deleting even half of them impairs fungal pathogenicity. According to NMR, the repeats form tightly folded 17-amino acid loops constrained by a disulfide bond linking conserved cysteines. Each loop contains a highly conserved WxxWxxW motif found in thrombospondin-1 (TSP-1) type 1 heparin-binding repeats. BAD-1 binds heparin specifically and saturably, and is competitively inhibited by soluble heparin, but not related glycosaminoglycans. According to SPR analysis, the affinity of BAD-1 for heparin is 33 nM±14 nM. Putative heparin-binding motifs are found both at the N-terminus and within each tandem repeat loop. Like TSP-1, BAD-1 blocks activation of T cells in a manner requiring the heparan sulfate-modified surface molecule CD47, and impairs effector functions. The tandem repeats of BAD-1 thus confer pathogenicity, harbor motifs that bind heparin, and suppress T-cell activation via a CD47-dependent mechanism, mimicking mammalian TSP-1.


PLOS Pathogens | 2015

Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia

Som G. Nanjappa; Nydiaris Hernández-Santos; Kevin Galles; Marcel Wüthrich; M. Suresh; Bruce S. Klein

Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients.


Mbio | 2013

Complement Component 3C3 and C3a Receptor Are Required in Chitin-Dependent Allergic Sensitization to Aspergillus fumigatus but Dispensable in Chitin-Induced Innate Allergic Inflammation

René M. Roy; Hugo C. Paes; Som G. Nanjappa; R.L. Sorkness; David J. Gasper; Alana K. Sterkel; Marcel Wüthrich; Bruce S. Klein

ABSTRACT Levels of the anaphylatoxin C3a are increased in patients with asthma compared with those in nonasthmatics and increase further still during asthma exacerbations. However, the role of C3a during sensitization to allergen is poorly understood. Sensitization to fungal allergens, such as Aspergillus fumigatus, is a strong risk factor for the development of asthma. Exposure to chitin, a structural polysaccharide of the fungal cell wall, induces innate allergic inflammation and may promote sensitization to fungal allergens. Here, we found that coincubation of chitin with serum or intratracheal administration of chitin in mice resulted in the generation of C3a. We established a model of chitin-dependent sensitization to soluble Aspergillus antigens to test the contribution of complement to these events. C3−/− and C3aR−/− mice were protected from chitin-dependent sensitization to Aspergillus and had reduced lung eosinophilia and type 2 cytokines and serum IgE. In contrast, complement-deficient mice were not protected against chitin-induced innate allergic inflammation. In sensitized mice, plasmacytoid dendritic cells from complement-deficient animals acquired a tolerogenic profile associated with enhanced regulatory T cell responses and suppressed Th2 and Th17 responses specific for Aspergillus. Thus, chitin induces the generation of C3a in the lung, and chitin-dependent allergic sensitization to Aspergillus requires C3aR signaling, which suppresses regulatory dendritic cells and T cells and induces allergy-promoting T cells. IMPORTANCE Asthma is one of the fastest growing chronic illnesses worldwide. Chitin, a ubiquitous polymer in our environment and a key component in the cell wall of fungal spores and the exoskeletons of insects, parasites, and crustaceans, triggers innate allergic inflammation. However, there is little understanding of how chitin is initially recognized by mammals and how early recognition of chitin affects sensitization to environmental allergens and development of allergic asthma. The complement system is evolutionarily one of the oldest facets of the early or innate warning systems in mammals. We studied whether and how complement components influence the recognition of chitin and shape the downstream sensitization toward fungal allergens. We show here that complement recognition of chitin plays a critical role in shaping the behavior of dendritic cells, which in turn regulate the function of T cells that mediate allergic responses to fungi. Asthma is one of the fastest growing chronic illnesses worldwide. Chitin, a ubiquitous polymer in our environment and a key component in the cell wall of fungal spores and the exoskeletons of insects, parasites, and crustaceans, triggers innate allergic inflammation. However, there is little understanding of how chitin is initially recognized by mammals and how early recognition of chitin affects sensitization to environmental allergens and development of allergic asthma. The complement system is evolutionarily one of the oldest facets of the early or innate warning systems in mammals. We studied whether and how complement components influence the recognition of chitin and shape the downstream sensitization toward fungal allergens. We show here that complement recognition of chitin plays a critical role in shaping the behavior of dendritic cells, which in turn regulate the function of T cells that mediate allergic responses to fungi.


PLOS Pathogens | 2017

Antifungal Tc17 cells are durable and stable, persisting as long-lasting vaccine memory without plasticity towards IFNγ cells

Som G. Nanjappa; Andrew J. McDermott; J. Scott Fites; Kevin Galles; Marcel Wüthrich; George S. Deepe; Bruce S. Klein

Our understanding of persistence and plasticity of IL-17A+ memory T cells is clouded by conflicting results in models analyzing T helper 17 cells. We studied memory IL-17A+ CD8+ T-cell (Tc17) homeostasis, persistence and plasticity during fungal vaccine immunity. We report that vaccine-induced memory Tc17 cells persist with high fidelity to the type 17 phenotype. Tc17 cells persisted durably for a year as functional IL-17A+ memory cells without converting to IFNγ+ (Tc1) cells, although they produced multiple type I cytokines in the absence of residual vaccine antigen. Memory Tc17 cells were canonical CD8+ T cells with phenotypic features distinct from Tc1 cells, and were Ror(γ)thi, TCF-1hi, T-betlo and EOMESlo. In investigating the bases of Tc17 persistence, we observed that memory Tc17 cells had much higher levels of basal homeostatic proliferation than did Tc1 cells. Conversely, memory Tc17 cells displayed lower levels of anti-apoptotic molecules Bcl-2 and Bcl-xL than Tc1 cells, yet were resistant to apoptosis. Tc1 cells required Bcl-2 for their survival, but Bcl-2 was dispensable for the maintenance of Tc17 cells. Tc17 and Tc1 cells displayed different requirements for HIF-1α during effector differentiation and sustenance and memory persistence. Thus, antifungal vaccination induces durable and stable memory Tc17 cells with distinct requirements for long-term persistence that distinguish them from memory Tc1 cells.

Collaboration


Dive into the Som G. Nanjappa's collaboration.

Top Co-Authors

Avatar

Bruce S. Klein

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Marcel Wüthrich

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

M. Suresh

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Erika Heninger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kevin Galles

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

René M. Roy

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Darrell R. McCaslin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David J. Gasper

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Eui Ho Kim

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Hanna I. Filutowicz

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge