Som S Shrestha
Oak Ridge National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Som S Shrestha.
Archive | 2015
Omar Abdelaziz; Jeffrey D Munk; Som S Shrestha; Randall Lee Linkous; William Goetzler; Matt Guernsey; Theo Kassuga
The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.
Science and Technology for the Built Environment | 2016
Bo Shen; Som S Shrestha; Omar Abdelaziz
To identify low global warming potential refrigerants to replace R-22 and R-410A, extensive experimental evaluations were conducted for multiple candidates of refrigerant at the standard test conditions and at high-ambient conditions with outdoor temperature varying from 27.8°C to 55.0°C. In the study, R-22 was compared to propane (R-290), DR-3, ARM-20B, N-20B, and R-444B in a mini split air-conditioning unit originally designed for R-22; R-410A was compared to R-32, DR-55, ARM-71A, L41-2 (R-447A) in a mini split-unit designed for R-410A. To reveal the physics behind the measured performance results, thermodynamic properties of the alternative refrigerants were analysed. In addition, the experimental data were used to calibrate a physics-based equipment model, for example, ORNL heat pump design model. The calibrated model translated the experimental results to key calculated parameters, i.e. compressor efficiencies and refrigerant side two-phase heat transfer coefficients, corresponding to each refrigerant. These calculated values provide scientific insights on the performance of the alternative refrigerants and are useful for other applications beyond mini split air-conditioning units.
Archive | 2014
Som S Shrestha; Vishaldeep Sharma; Omar Abdelaziz
As a contribution to the AHRI Low-GWP Alternative Refrigerants Evaluation Program (AREP), this study compares the performance of lower-GWP alternative refrigerant R-32 + R-134a mixture, to that of refrigerant R-410A (baseline) in a scroll compressor designed for air-conditioning and heat pump applications. These comparisons were carried out via compressor calorimeter tests performed on a compressor designed for refrigerant R-410A and having a nominal rated capacity of 21,300 Btu/hr. Tests were conducted over a suction dew point temperature range of 10 F to 55 F in 5 F increments and a discharge dew point temperature range of 70 F to 140 F in 10 F increments. All the tests were performed with 20 F superheat, 40 F superheat, and 65 F suction temperature. A liquid subcooling level of 15 F was maintained for all the test conditions. The tests showed that the discharge temperature of the alternative refrigerant was higher than that of R-410A at all test conditions. Also, the energy efficiency ratio (EER) and cooling capacity of compressor using the alternative refrigerant were slightly lower in comparison to that of R-410A.
Archive | 2013
Som S Shrestha; Diana E. Hun; Andre Omer Desjarlais
The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.
Applied Energy | 2014
Kaushik Biswas; Jue Lu; Parviz Soroushian; Som S Shrestha
Energy and Buildings | 2012
Mahabir S Bhandari; Som S Shrestha; Joshua Ryan New
Archive | 2012
Joshua Ryan New; Jibonananda Sanyal; Mahabir S Bhandari; Som S Shrestha
Archive | 2011
Som S Shrestha; William A Miller; Therese K Stovall; Andre Omer Desjarlais; Kenneth W Childs; Wallace D. Porter; Mahabir S Bhandari; Steven J Coley
Archive | 2010
Jan Kosny; Therese K Stovall; Som S Shrestha; D.W. Yarbrough
Environmental Impact Assessment Review | 2014
Som S Shrestha; Kaushik Biswas; Andre Omer Desjarlais