Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Somasundar Ashok is active.

Publication


Featured researches published by Somasundar Ashok.


Biotechnology Advances | 2013

Recent advances in biological production of 3-hydroxypropionic acid

Vinod Kumar; Somasundar Ashok; Sunghoon Park

3-Hydroxypropionic acid (3-HP) is a valuable platform chemical that can be produced biologically from glucose or glycerol. This review article provides an overview and the current status of microbial 3-HP production. The constraints of microbial 3-HP production and possible solutions are also described. Finally, future prospects of biological 3-HP production are discussed.


Journal of Biotechnology | 2012

Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains

Chelladurai Rathnasingh; Subramanian Mohan Raj; Youjin Lee; Christy Catherine; Somasundar Ashok; Sunghoon Park

Malonyl-CoA is an intermediary compound that is produced during fatty acid metabolism. Our study aimed to produce the commercially important platform chemical 3-hydroxypropionic acid (3-HP) from its immediate precursor malonyl-CoA by recombinant Escherichia coli strains heterologously expressing the mcr gene of Chloroflexus aurantiacus DSM 635, encoding an NADPH-dependent malonyl-CoA reductase (MCR). The recombinant E. coli overexpressing mcr under the T5 promoter showed MCR activity of 0.015 U mg⁻¹ protein in crude cell extract and produced 0.71 mmol/L of 3-HP in 24h in shake flask cultivation under aerobic conditions with glucose as the sole source of carbon. When acetyl-CoA carboxylase and biotinilase, encoded by the genes accADBCb (ACC) of E. coli K-12 were overexpressed along with MCR, the final 3-HP titer improved by 2-fold, which is 1.6 mM. Additional expression of the gene pntAB, encoding nicotinamide nucleotide transhydrogenase that converts NADH to NADPH, increased 3-HP production to 2.14 mM. The strain was further developed by deleting the sucAB gene, encoding α-ketoglutarate dehydrogenase complex in tricarboxylic acid (TCA) cycle, or blocking lactate and acetate production pathways, and evaluated for the production of 3-HP. We report on the feasibility of producing 3-HP from glucose through the malonyl-CoA pathway.


Metabolic Engineering | 2013

Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT

Somasundar Ashok; Subramanian Mohan Raj; Yeounjoo Ko; Mugesh Sankaranarayanan; Shengfang Zhou; Vinod Kumar; Sunghoon Park

3-Hydroxypropionic acid (3-HP), an industrially important platform chemical, is used as a precursor during the production of many commercially important chemicals. Recently, recombinant strains of K. pneumoniae overexpressing an NAD(+)-dependent γ-glutamyl-γ-aminobutyraldehyde dehydrogenase (PuuC) enzyme of K. pneumoniae DSM 2026 were shown to produce 3-HP from glycerol without the addition coenzyme B(12), which is expensive. However, 3-HP production in K. pneumoniae is accompanied with NADH generation, and this always results in large accumulation of 1,3-propanediol (1,3-PDO) and lactic acid. In this study, we investigated the potential use of nitrate as an electron acceptor both to regenerate NAD(+) and to prevent the formation of byproducts during anaerobic production of 3-HP from glycerol. Nitrate addition could improve NAD(+) regeneration, but decreased glycerol flux towards 3-HP production. To divert more glycerol towards 3-HP, a novel recombinant strain K. pneumoniae ΔglpKΔdhaT (puuC) was developed by disrupting the glpK gene, which encodes glycerol kinase, and the dhaT gene, which encodes 1,3-propanediol oxidoreductase. This strain showed improved cellular NAD(+) concentrations and a high carbon flux towards 3-HP production. Through anaerobic cultivation in the presence of nitrate, this recombinant strain produced more than 40±3mM 3-HP with more than 50% yield on glycerol in shake flasks and 250±10mM 3-HP with approximately 30% yield on glycerol in a fed-batch bioreactor.


Biotechnology and Bioengineering | 2013

Production of 3‐hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally

Somasundar Ashok; Mugesh Sankaranarayanan; Yeounjoo Ko; Kyeungeun Jae; Satish Kumar Ainala; Vinod Kumar; Sunghoon Park

3‐Hydroxypropionic acid (3‐HP) is an important platform chemical that can be used to synthesize a range of chemical compounds. A previous study demonstrated that recombinant Escherichia coli stains can produce 3‐HP from glycerol in the presence of vitamin B12 (coenzyme B12), when overexpressed with a coenzyme B12‐dependent glycerol dehydratase (DhaB) and an aldehyde dehydrogenase. The present study examined the production of 3‐HP in recombinant Klebsiella pneumoniae strains, which naturally synthesizes vitamin B12 and does not require supplementation of the expensive vitamin. The NAD+‐dependent gamma‐glutamyl‐gamma‐aminobutyraldehyde dehydrogenase (PuuC) of K. pneumoniae alone or with its DhaB was overexpressed homologously, and two major oxidoreductases, DhaT and YqhD, were disrupted. Without vitamin B12 addition, the recombinant K. pneumoniae ΔdhaTΔyqhD overexpressing PuuC could produce ∼3.8 g/L 3‐HP in 12 h of flask culture. However, this was possible only under the appropriate aeration conditions; 1,3‐propanediol (1,3‐PDO) (instead of 3‐HP) was mainly produced when aeration was insufficient, whereas a very small amount of both 3‐HP and 1,3‐PDO were produced when aeration was too high. The production of a small amount of 3‐HP under improper aeration conditions was attributed to either slow NAD+ regeneration (under low aeration) or reduced vitamin B12 synthesis (under high aeration). In a glycerol fed‐batch bioreactor experiment under a constant DO of 5%, the strain, K. pneumoniae ΔdhaTΔyqhD, overexpressing both PuuC and DhaB could produce >28 g/L 3‐HP in 48 h with a yield of >40% on glycerol. Only small amount of 3‐HP was produced when cultivation was carried out at a constant aeration of 1 vvm or constant 10% DO. These results show that K. pneumoniae is potentially useful for the production of 3‐HP in an economical culture medium that does not require vitamin B12. The results also suggest that the aeration conditions should be optimized carefully for the efficient production of 3‐HP while using this strain. Biotechnol. Bioeng. 2013; 110: 511–524.


Bioresource Technology | 2013

Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase

Vinod Kumar; Mugesh Sankaranarayanan; Meetu Durgapal; Shengfang Zhou; Yeounjoo Ko; Somasundar Ashok; Ritam Sarkar; Sunghoon Park

In the present study, the lactate dehydrogenase-deficient (ldhA(-)) recombinant Klebsiella pneumoniae overexpressing an ALDH (KGSADH) was developed and the co-production of 3-HP and PDO from glycerol by this recombinant under resting cell conditions was examined. The new recombinant did not produce any appreciable lactate, which seriously inhibits the production of 3-HP and PDO. The final titers of 3-HP and PDO by the ldhA(-) recombinant strain at 60 h were 252.2 mM and 308.7 mM, respectively, which were improved by approximately 30% and 50%, respectively, compared to those by the counterpart recombinant strain, which was the wild type for ldhA. In addition, after deleting ldhA, the cumulative yield on glycerol and specific production rate of these two metabolites (3-HP and PDO) were enhanced by 41.4% and 52%, respectively.


Applied Microbiology and Biotechnology | 2013

Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19.

Satish Kumar Ainala; Somasundar Ashok; Yeounjoo Ko; Sunghoon Park

Citrobacter amalonaticus Y19 (Y19) was isolated because of its ability for carbon monoxide-dependent hydrogen production (water–gas shift reaction). This paper reports the assimilation of glycerol and the production of 1,3-propanediol (1,3-PDO) by Y19. Genome sequencing revealed that Y19 contained the genes for the utilization of glycerol and 1,2-propanediol (pdu operon) along with those for the synthesis of coenzyme B12 (cob operon). On the other hand, it did not possess the genes for the fermentative metabolism of glycerol of Klebsiella pneumoniae, which consists of both the oxidative (dhaD and dhaK) and reductive (dhaB and dhaT) pathways. In shake-flask cultivation under aerobic conditions, Y19 could grow well with glycerol as the sole carbon source and produced 1,3-PDO. The level of 1,3-PDO production was improved when vitamin B12 was added to the culture medium under aerobic conditions. Under anaerobic conditions, cell growth and 1,3-PDO production on glycerol was also possible, but only when an exogenous electron acceptor, such as nitrate or fumarate, was added. This is the first report of the glycerol metabolism and 1,3-PDO production by C. amalonaticus Y19.


Biotechnology Journal | 2014

Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions.

Yeounjoo Ko; Somasundar Ashok; Satish Kumar Ainala; Mugesh Sankaranarayanan; Ah Yeong Chun; Gyoo Yeol Jung; Sunghoon Park

Coenzyme B12 (Vitamin B12) is one of the most complex biomolecules and an essential cofactor required for the catalytic activity of many enzymes. Pseudomonas denitrificans synthesizes coenzyme B12 in an oxygen‐dependent manner using a pathway encoded by more than 25 genes that are located in six different operons. Escherichia coli, a robust and suitable host for metabolic engineering was used to produce coenzyme B12. These genes were cloned into three compatible plasmids and expressed heterologously in E. coli BL21 (DE3). Real‐time PCR, SDS–PAGE analysis and bioassay showed that the recombinant E. coli expressed the coenzyme B12 synthetic genes and successfully produced coenzyme B12. However, according to the quantitative determination by inductively coupled plasma‐mass spectrometry, the amount of coenzyme B12 produced by the recombinant E. coli (0.21 ± 0.02 μg/g cdw) was approximately 13‐fold lower than that by P. denitrificans (2.75 ± 0.22 μg/g cdw). Optimization of the culture conditions to improve the production of coenzyme B12 by the recombinant E. coli was successful, and the highest titer (0.65 ± 0.03 μg/g cdw) of coenzyme B12 was obtained. Interestingly, although the synthesis of coenzyme B12 in P. denitrificans is strictly oxygen‐dependent, the recombinant E. coli could produce coenzyme B12 under anaerobic conditions.


Biotechnology and Bioprocess Engineering | 2014

3-Hydroxyisobutyrate dehydrogenase-I from Pseudomonas denitrificans ATCC 13867 degrades 3-hydroxypropionic acid

Philah Lee; Subramanian Mohan Raj; Shengfang Zhou; Somasundar Ashok; Selvakumar Edwardraja; Sunghoon Park

This study examined the role and physiological relevance of 3-hydroxyisobutyrate dehydrogenase-I (3HIBDHI) of Pseudomonas denitrificans ATCC 13867 in the degradation of 3-hydroxypropionic acid (3-HP) during 3-HP production. The gene encoding 3HIBDH-I of P. denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL21 (DE3). The recombinant 3HIBDH-I was then purified on a Ni-NTA-HP column and characterized for its choice of substrates, cofactors, metals, reductants, and the optimal temperature and pH. The recombinant 3HIBDH-I showed a high catalytic constant (kcat/Km) of 604.1 ± 71.1 mM/S on (S)-3-hydroxyisobutyrate, but no detectable activity on (R)-3-hydroxyisobutyrate. 3HIBDH-I preferred NAD+ over NADP+ as a cofactor for its catalytic activity. The kcat/Km determined for 3-HP was 15.40 ± 1.43 mM/S in the presence of NAD+ at 37°C and pH 9.0. In addition to (S)-3-hydroxyisobutyrate and 3-HP, 3HIBDH-I utilized l-serine, methyl-d,l-serine, and methyl-(S)-(+)-3-hydroxy-2-methylpropionate; on the other hand, the kcat/Km values determined for these substrates were less than 5.0mM/S. Ethylenediaminetetraacetic acid, 2-mercaptoethanol, dithiothreitol and Mn2+ increased the activity of 3HIBDHI significantly, whereas the presence of Fe2+, Hg2+ and Ag+ in the reaction mixture at 1.0 mM completely inhibited its activity. This study revealed the characteristics of 3HIBDH-I and its significance in 3-HP degradation.


Biotechnology and Bioprocess Engineering | 2014

Elucidation of toxicity of organic acids inhibiting growth of Escherichia coli W

Ah Yeong Chun; Liang Yunxiao; Somasundar Ashok; Eunhee Seol; Sunghoon Park

The toxic effects of 3-hydroxypropionic acid (3-HP) at high concentrations on cell growth and cellular metabolism are a great challenge to its commercial production. This study has examined and compared the toxic effects of 3-HP on cell growth with other similar weak acids, especially lactic acid, under various concentrations, temperatures and pH using Escherichia coli W as the test strain. 3-HP was approximately 4.4-times more toxic than lactic acid due to the 4.4-fold weaker acidity or 0.64 higher pKa value. The two acids presented no appreciable difference when the growth inhibition was correlated with the undissociated or protonated free acid concentration calculated by the Henderson-Hasselbalch equation. The growth inhibition by other small organic acids, such as acetic acid, pyruvic acid, propionic acid, 2-hydroxybutyric acid (2-HB) and 3-hydroxybutyric acid (3-HB), was also well correlated with their pKa values or protonated free acid concentrations. This study suggests that the growth inhibition by small weak acids is mainly caused by the socalled proton effect (rather than the anion effect), i.e., an increase in the intracellular proton concentration. An appropriate increase in the medium pH was suggested to alleviate the acid toxicity by reducing the free acid concentration in the culture medium.


PLOS ONE | 2013

Cloning, Expression and Characterization of 3-Hydroxyisobutyrate Dehydrogenase from Pseudomonas denitrificans ATCC 13867

Shengfang Zhou; Subramanian Mohan Raj; Somasundar Ashok; Selvakumar Edwardraja; Sun Gu Lee; Sunghoon Park

The gene encoding an NAD+-dependent, 3-hydroxyisobutyrate dehydrogenase (3HIBDH-IV) from Pseudomonas denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL 21 (DE3) and characterized to understand its physiological relevance in the degradation of 3-hydroxypropionic acid (3-HP). The deduced amino acid sequence showed high similarity to other 3-hydroxyisobutyrate dehydrogenase isozymes (3HIBDHs) of P. denitrificans ATCC 13867. A comparison of 3HIBDH-IV with its relevant enzymes along with molecular docking studies suggested that Lys171, Asn175 and Gly123 are important for its catalytic function on 3-hydroxyacids. The recombinant 3HIBDH-IV was purified to homogeneity utilizing a Ni-NTA-HP resin column in high yield. 3HIBDH-IV was very specific to (S)-3-hydroxyisobutyrate, but also catalyzed the oxidation of 3-HP to malonate semialdehyde. The specific activity and half-saturation constant (K m) for 3-HP at 30°C and pH 9.0 were determined to be 17 U/mg protein and 1.0 mM, respectively. Heavy metals, such as Ag+ and Hg2+, completely inhibited the 3HIBDH-IV activity, whereas dithiothreitol, 2-mercaptoethanol and ethylenediaminetetraacetic acid increased its activity 1.5–1.8-fold. This paper reports the characteristics of 3HIBDH-IV as well as its probable role in 3-HP degradation.

Collaboration


Dive into the Somasundar Ashok's collaboration.

Top Co-Authors

Avatar

Sunghoon Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeounjoo Ko

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Vinod Kumar

Indian Institute of Technology Delhi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shengfang Zhou

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Sun-Gu Lee

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Eunhee Seol

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge