Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Somi Kim Cho is active.

Publication


Featured researches published by Somi Kim Cho.


Cancer Letters | 2012

Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells

Trang Thi Mai; JeongYong Moon; YeonWoo Song; Pham Quoc Viet; Pham Van Phuc; Jung Min Lee; Tae-Hoo Yi; Moonjae Cho; Somi Kim Cho

Ginsenoside F2 (F2) was assessed for its antiproliferative activity against breast cancer stem cells (CSCs). F2 induced apoptosis in breast CSCs by activating the intrinsic apoptotic pathway and mitochondrial dysfunction. Concomitantly, F2 induced the formation of acidic vesicular organelles, recruitment of GFP-LC3-II to autophagosomes, and elevation of Atg-7 levels, suggesting that F2 initiates an autophagic progression in breast CSCs. Treatment with an inhibitor of autophagy enhanced F2-induced cell death. Our findings provide new insights into the anti-cancer activity of F2 and may contribute to the rational use and pharmacological study of F2.


Journal of Materials Chemistry | 2012

Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells

Karthikeyan Krishnamoorthy; Jeong Yong Moon; Ho Bong Hyun; Somi Kim Cho; Sang-Jae Kim

Magnesium oxide nanoparticles (MgO NPs) are increasingly recognized for their applications in cancer therapy such as nano-cryosurgery and hyperthermia. The present study investigated the cytotoxic effects of magnesium oxide nanoparticles (MgO NPs) against normal lung fibroblast cells and different types of cancerous cells. MgO NPs exhibited a preferential ability to kill cancerous cells such as HeLa, AGS and SNU-16 cells. A detailed study has been undertaken to investigate the mechanism of cell death occurring in cancer cells (AGS cells) by the analysis of morphological changes, western blot analysis and flow cytometry measurements. Western blot analysis measurements suggested the role of apoptosis in cell death due to MgO exposure. MgO NPs enhanced ultrasound-induced lipid peroxidation in the liposomal membrane. Flow cytometry measurements using H2DCFDA showed that the toxicity of MgO NPs is attributed to the generation of reactive oxygen species, which further results in the induction of apoptosis in cancer cells. Our experimental results suggested the potential utility of MgO NPs in the treatment of cancer.


Oxidative Medicine and Cellular Longevity | 2013

Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells.

Hyeonji Kim; Jeong Yong Moon; Kwang Seok Ahn; Somi Kim Cho

Quercetin is a dietary flavonoid with known antitumor effects against several types of cancers by promoting apoptotic cell death and inducing cell cycle arrest. However, U373MG malignant glioma cells expressing mutant p53 are resistant to a 24u2009h quercetin treatment. In this study, the anticancer effect of quercetin was reevaluated in U373MG cells, and quercetin was found to be significantly effective in inhibiting proliferation of U373MG cells in a concentration-dependent manner after 48 and 72u2009h of incubation. Quercetin induced U373MG cell death through apoptosis, as evidenced by the increased number of cells in the sub-G1 phase, the appearance of fragmented nuclei, decreased mitochondrial membrane potential, proteolytic activation of caspase-3 and caspase-7, an increase in caspase-3 and 9 activities, and degradation of poly(ADP-ribose) polymerase protein. Furthermore, quercetin activated JNK and increased the expression of p53, which translocated to the mitochondria and simultaneously led to the release of cytochrome c from mitochondria to the cytosol. We also found that quercetin induced autophagy. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in U373MG cells, indicating that quercetin induced protective autopagy in U373MG cells.


Journal of Ginseng Research | 2012

Anti-Cancer Effect of Ginsenoside F2 against Glioblastoma Multiforme in Xenograft Model in SD Rats

Ji Yon Shin; Jung Min Lee; Heon Sub Shin; Sang Yong Park; Jung Eun Yang; Somi Kim Cho; Tae-Hoo Yi

The glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. Despite combination treatments of radiation and chemotherapy, the survival periods are very short. Therefore, this study was conducted to assess the potential of ginsenoside F2 (F2) to treat GBM. In in vitro experiments with glioblastoma cells U373MG, F2 showed the cytotoxic effect with IC50 of 50 μg/mL through apoptosis, confirmed by DNA condensation and fragmentation. The cell population of cell cycle sub-G1 as indicative of apoptosis was also increased. In xenograft model in SD rats, F2 at dosage of 35 mg/kg weight was intravenously injected every two days. This reduced the tumor growth in magnetic resonance imaging images. The immunohistochemistry revealed that the anticancer activity might be mediated through inhibition of proliferation judged by Ki67 and apoptosis induced by activation of caspase-3 and -8. And the lowered expression of CD31 showed the reduction in blood vessel densities. The expression of matrix metalloproteinase-9 for invasion of cancer was also inhibited. The cell populations with cancer stem cell markers of CD133 and nestin were reduced. The results of this study suggested that F2 could be a new potential chemotherapeutic drug for GBM treatment by inhibiting the growth and invasion of cancer.


Food and Chemical Toxicology | 2010

Induction of apoptosis in human cervical carcinoma HeLa cells by polymethoxylated flavone-rich Citrus grandis Osbeck (Dangyuja) leaf extract

Hana Kim; Jeong Yong Moon; Ashik Mosaddik; Somi Kim Cho

Citrus grandis Osbeck (Dangyuja) has a high content of flavonoids with health-related properties. Although previous data have revealed the anticancer potency of some Citrus species, the underlying molecular mechanisms of this activity by leaf extracts have not been studied in detail. The purpose of this study was to evaluate the cytotoxic effects of citrus leaves on five human cancer cell lines and to determine the possible mechanisms of cell death elicited by the chloroform fraction (CF) of the Dangyuja leaf. The CF of Dangyuja strongly decreased the survival rate of HeLa cells, among the tested cell lines. CF treatment induced the down-regulation of anti-apoptotic Bcl-2 expression, resulting in the proteolytic activation of caspases and the degradation of poly (ADP-ribose) polymerase (PARP) protein. Arrested cell growth and induction of apoptosis were confirmed by flow cytometry and DNA fragmentation analysis, respectively. The major components of the CF were identified as isosinensetin, sinensetin, tetramethyl-O-isoscutellarein, nobiletin, tangeretin, and 5-hydroxy-6,7,8,3,4-pentamethoxyflavone by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Our results suggest that the CF of Dangyuja leaves is an excellent source of functional polymethoxylated flavones, which may help prevent cervical cancer and may potentially be a useful agent for the treatment of certain malignancies.


ACS Applied Materials & Interfaces | 2014

Toxicity of Nano Molybdenum Trioxide toward Invasive Breast Cancer Cells

Thao Anh Tran; Karthikeyan Krishnamoorthy; Yeon Woo Song; Somi Kim Cho; Sang-Jae Kim

Current chemotherapy is limited by the nature of invasive cancer cells, which are similar to cancer stem cells. Nanomaterials provide a potential alternate mode of cancer therapy. This study investigated the cytotoxicity of molybdenum trioxide (MoO3) nanoplates toward invasive breast cancer iMCF-7 cells by analyzing morphological changes and performing Western blot and flow cytometry analyses. The findings suggested that MoO3 exposure induces apoptosis and generates reactive oxygen species (ROS) in iMCF-7 cells. This study revealed the potential utility of MoO3 for treating metastatic cancer cells, which might enable advancements in cancer therapy.


Food Chemistry | 2012

Induction of apoptosis by ethanolic extract of mango peel and comparative analysis of the chemical constitutes of mango peel and flesh

Hyeonji Kim; Hana Kim; Ashik Mosaddik; Rajendra Gyawali; Kwang Seok Ahn; Somi Kim Cho

The underlying mechanisms of the anticancer activity of the ethanolic extract of mango peel (EEMP) and its constituents were investigated. EEMP induced death of human cervical carcinoma HeLa cells through apoptosis, as evidenced by the increased cell population in the sub-G1 phase and the appearance of fragmented nuclei. Treatment of the cells with EEMP also downregulated anti-apoptotic Bcl-2 expression, resulting in the proteolytic activation of caspase-3, 7, 8, and 9 and the degradation of poly (ADP-ribose) polymerase (PARP) protein. The major components of mango peel were identified by liquid chromatography-electrospray ionisation tandem mass spectrometry and gas chromatography-mass spectrometry. Our data suggest that EEMP is an excellent source of quercetin 3-O-galactoside, mangiferin gallate, isomangiferin gallate, quercetin-3-O-arabinopyranoside, and mangiferin along with unsaturated fatty acids oleic acid, linoleic acid, and ethyl linoleate, which may help to prevent cervical cancer and may be a useful agent for the treatment of some other malignancies.


Journal of Food Science | 2011

Comparative Antioxidant and Antiproliferative Activities of Red and White Pitayas and Their Correlation with Flavonoid and Polyphenol Content

Hyoenji Kim; Hyung-Kyoon Choi; Jeong Yong Moon; Young S. Kim; Ashik Mosaddik; Somi Kim Cho

Pitaya, commonly known as dragon fruit, has generated considerable consumer interest because of its attractive color and micronutrient content. The present study investigated the total polyphenol and flavonoid content, antioxidant activity against various free radicals, and antiproliferative effect on several cancer cell lines of extracts of flesh and peel of white and red pitayas, collected from Jeju Island, Korea. The total polyphenol and flavonoid contents of 80% methanol extracts of red pitaya peel (RPP) and white pitaya peel (WPP) were approximately 3- and 5-fold higher than those of red pitaya flesh (RPF) and white pitaya flesh (WPF), respectively. Overall, the total flavonoid and polyphenol contents of these extracts were RPP>WPP>RPF>WPF and WPP>RPP>RPF>WPF, respectively. In addition, a study involving nontargeted high-performance liquid chromatography coupled with a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI-MS) of different pitaya extracts indicated the presence of phenolic, hydroxycinnamic acid derivatives, flavonol glycosides, betacyanin, and its derivatives with a few unknown compounds. Separately, peel extracts of both red and white pitayas showed higher 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, and alkyl radical-scavenging activity than did the corresponding flesh extracts. Both peel extracts also showed stronger antiproliferative activity against AGS and MCF-7 cancer cells than either flesh extract. There was a direct correlation between the phenolic content and antioxidant effect, but no correlation observed between antioxidant activity and antiproliferative activity. These results suggest that the peel of white and red pitaya may be a valuable ingredient in foods and may also be useful in cosmetic, nutraceutical, and pharmaceutical applications.


Journal of Agricultural and Food Chemistry | 2014

Metabolite Profiling of Red and White Pitayas (Hylocereus polyrhizus and Hylocereus undatus) for Comparing Betalain Biosynthesis and Antioxidant Activity

Dong Ho Suh; Sunmin Lee; Do Yeon Heo; Young-Suk Kim; Somi Kim Cho; Sarah Lee; Choong Hwan Lee

Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) was performed using gas chromatography-time-of-flight-mass spectrometry and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry with multivariate analysis. Different species and parts of pitayas (red peel, RP; white peel, WP; red flesh, RF; and white flesh, WF) were clearly separated by partial least-squares discriminate analysis. Furthermore, betalain-related metabolites, such as betacyanins and betaxanthins, or their precursors were described on the basis of their metabolites. The results of antioxidant activity tests [1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing ability of plasma (FRAP)], total phenolic contents (TPC), total flavonoid contents (TFC), and total betacyanin contents (TBC) showed the following: RP ≥ WP > RF > WF. TPC, TFC, TBC, and betalain-related metabolites were higher in the peel than in the flesh and suggested to be the main contributors to antioxidant activity in pitayas. Therefore, peels as well as pulp of pitaya could beneficially help in the food industry.


Journal of Chromatography B | 2010

Metabolic analysis of guava (Psidium guajava L.) fruits at different ripening stages using different data-processing approaches

Sarah Lee; Hyung-Kyoon Choi; Somi Kim Cho; Young-Suk Kim

Gas chromatography coupled with time-of-flight mass spectrometry and principal component analysis were used to obtain the metabolite profiles of guava (Psidium guajava) fruits. Results with two types of data-processing software, ChromaTOF and AMDIS, were compared to explain the differences between the samples. There were some differences in score and loading plot patterns of PCA as well as in the composition of the metabolites. However, little difference was observed in the type of metabolites detected and identified using either type of software. Both the flesh and peel of premature and mature white guava fruits were compared for the analysis of the metabolite profiles. Malic acid, aspartic acid, and glucose were the major metabolites distinguishing the different parts of guava fruits in the PCA loading plot. In addition, the metabolic profiles of the fruits revealed significant changes in some metabolites during ripening. The major components contributing to the separation were serine, citric acid, fructose, sucrose, and some unknowns. In particular, sucrose, fructose, serine and citric acid were related to the ripening of guava fruits. Fructose and sucrose were increased whereas citric acid was decreased during guava fruit ripening.

Collaboration


Dive into the Somi Kim Cho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeon Woo Song

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Hyeonji Kim

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Moonjae Cho

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-Sun Lee

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Ho Bong Hyun

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashik Mosaddik

Jeju National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge