Sona Gregorova
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sona Gregorova.
Genome Research | 2008
Sona Gregorova; Petr Divina; Radka Storchová; Zdenek Trachtulec; Vladana Fotopulosova; Karen L. Svenson; Leah Rae Donahue; Beverly Paigen; Jiri Forejt
Consomic (chromosome substitution) strains (CSs) represent the most recent addition to the mouse genetic resources aimed to genetically analyze complex trait loci (QTLs). In this study, we report the development of a set of 28 mouse intersubspecific CSs. In each CS, we replaced a single chromosome of the C57BL/6J (B6) inbred strain (mostly Mus m. domesticus) with its homolog from the PWD/Ph inbred strain of the Mus m. musculus subspecies. These two progenitor subspecies diverged less than 1 million years ago and accumulated a large number of genetic differences that constitute a rich resource of genetic variation for QTL analyses. Altogether, the 18 consomic, nine subconsomic, and one conplastic strain covered all 19 autosomes, X and Y sex chromosomes, and mitochondrial DNA. Most CSs had significantly lower reproductive fitness compared with the progenitor strains. CSs homosomic for chromosomes 10 and 11, and the C57BL/6J-Chr X males, failed to reproduce and were substituted by less affected subconsomics carrying either a proximal, central, or distal part of the respective chromosome. A genome-wide scan of 965 DNA markers revealed 99.87% purity of the B6 genetic background. Thirty-three nonsynonymous substitutions were uncovered in the protein-coding regions of the mitochondrial DNA of the B6.PWD-mt conplastic strain. A pilot-phenotyping experiment project revealed a high number of variations among B6.PWD consomics.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Tanmoy Bhattacharyya; Sona Gregorova; Ondrej Mihola; Martin Anger; Jaroslava Sebestova; Paul W. Denny; Petr Simecek; Jiri Forejt
Significance Hybrid sterility contributes to speciation by restricting gene flow between related taxa. Although four hybrid sterility genes have been identified in Drosophila and mouse so far, the underlying molecular mechanisms are largely unknown. We describe extensive asynapsis of chromosomes in male and female meiosis of F1 hybrids between two closely related mouse subspecies. Using the intersubspecific chromosome-substitution strains, we demonstrate that the heterospecific pairing of homologous chromosomes is a preexisting condition of asynapsis and may represent a universal mechanism of pachytene arrest in interspecific hybrids. Sex-specific manifestation of asynapsis can explain the mechanism of Haldane’s rule. According to the Dobzhansky–Muller model, hybrid sterility is a consequence of the independent evolution of related taxa resulting in incompatible genomic interactions of their hybrids. The model implies that the incompatibilities evolve randomly, unless a particular gene or nongenic sequence diverges much faster than the rest of the genome. Here we propose that asynapsis of heterospecific chromosomes in meiotic prophase provides a recurrently evolving trigger for the meiotic arrest of interspecific F1 hybrids. We observed extensive asynapsis of chromosomes and disturbance of the sex body in >95% of pachynemas of Mus m. musculus × Mus m. domesticus sterile F1 males. Asynapsis was not preceded by a failure of double-strand break induction, and the rate of meiotic crossing over was not affected in synapsed chromosomes. DNA double-strand break repair was delayed or failed in unsynapsed autosomes, and misexpression of chromosome X and chromosome Y genes was detected in single pachynemas and by genome-wide expression profiling. Oocytes of F1 hybrid females showed the same kind of synaptic problems but with the incidence reduced to half. Most of the oocytes with pachytene asynapsis were eliminated before birth. We propose the heterospecific pairing of homologous chromosomes as a preexisting condition of asynapsis in interspecific hybrids. The asynapsis may represent a universal mechanistic basis of F1 hybrid sterility manifested by pachytene arrest. It is tempting to speculate that a fast-evolving subset of the noncoding genomic sequence important for chromosome pairing and synapsis may be the culprit.
Evolution | 2012
Maria Dzur-Gejdosova; Petr Simecek; Sona Gregorova; Tanmoy Bhattacharyya; Jiri Forejt
Hybrid sterility as a postzygotic reproductive isolation mechanism has been studied for over 80 years, yet the first identifications of hybrid sterility genes in Drosophila and mouse are quite recent. To study the genetic architecture of F1 hybrid sterility between young subspecies of house mouse Mus m. domesticus and M. m. musculus, we conducted QTL analysis of a backcross between inbred strains representing these two subspecies and probed the role of individual chromosomes in hybrid sterility using the intersubspecific chromosome substitution strains. We provide direct evidence that the asymmetry in male infertility between reciprocal crosses is conferred by the middle region of M. m. musculus Chr X, thus excluding other potential candidates such as Y, imprinted genes, and mitochondrial DNA. QTL analysis identified strong hybrid sterility loci on Chr 17 and Chr X and predicted a set of interchangeable autosomal loci, a subset of which is sufficient to activate the Dobzhansky–Muller incompatibility of the strong loci. Overall, our results indicate the oligogenic nature of F1 hybrid sterility, which should be amenable to reconstruction by proper combination of chromosome substitution strains. Such a prefabricated model system should help to uncover the gene networks and molecular mechanisms underlying hybrid sterility.
Mammalian Genome | 1997
Zdenek Trachtulec; Monika Mňuková-Fajdelová; Renata M. J. Hamvas; Sona Gregorova; Werner Mayer; Hans Lehrach; Vladimir Vincek; Jiří Forejt; Jan Klein
The Hybrid sterility 1 (Hst1) gene causes male infertility in crosses between certain inbred strains of the laboratory and wild mouse, Mus musculus. To identify the causative gene, we have searched YAC clones encompassing the Hstl region for testis-expressed sequences, using the cDNA selection method. We isolated 12 non-overlapping cDNA clones, sequenced them, and placed them on a physical map based on the analysis of YAC clones and total genomic DNA. The cDNA clones map to ten loci. Three cDNA sequences correspond to the proteasome subunit C5 (locus Psmbl), ornithine decarboxylase (Odc-rs15), and pentazinc finger (Zfp91-rsl) transcripts. Three of the ten testis-expressed loci described in this report (D17Ph4e, Psmbl, and Zfp91-rs1) co-segregate with all Hst1 recombinants and, together with the Tbp gene, are therefore potential candidates for the Hst1 gene. The presented physical and genetic mapping data indicate there are no gross rearrangements distinguishing the Hst1f and Hst1s alleles.
PLOS Genetics | 2014
Tanmoy Bhattacharyya; Radka Reifova; Sona Gregorova; Petr Simecek; Vaclav Gergelits; Martin Mistrik; Iva Martincová; Jaroslav Piálek; Jiri Forejt
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldanes rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.
BMC Evolutionary Biology | 2011
Louis Boell; Sona Gregorova; Jiri Forejt; Diethard Tautz
BackgroundExpectations of repeatedly finding associations between given genes and phenotypes have been borne out by studies of parallel evolution, especially for traits involving absence or presence of characters. However, it has rarely been asked whether the genetic basis of quantitative trait variation is conserved at the intra- or even at the interspecific level. This question is especially relevant for shape, where the high dimensionality of variation seems to require a highly complex genetic architecture involving many genes.ResultsWe analyse here the genetic effects of chromosome substitution strains carrying M. m. musculus chromosomes in a largely M. m. domesticus background on mandible shape and compare them to the results of previously published QTL mapping data between M. m. domesticus strains. We find that the distribution of genetic effects and effect sizes across the genome is consistent between the studies, while the specific shape changes associated with the chromosomes are different. We find also that the sum of the effects from the different M. m. musculus chromosomes is very different from the shape of the strain from which they were derived, as well as all known wild type shapes.ConclusionsOur results suggest that the relative chromosome-wide effect sizes are comparable between the long separated subspecies M. m. domesticus and M. m. musculus, hinting at a relative stability of genes involved in this complex trait. However, the absolute effect sizes and the effect directions may be allele-dependent, or are context dependent, i.e. epistatic interactions appear to play an important role in controlling shape.
PLOS Genetics | 2016
Maria Balcova; Barbora Faltusova; Vaclav Gergelits; Tanmoy Bhattacharyya; Ondrej Mihola; Zdenek Trachtulec; Corinna Knopf; Vladana Fotopulosova; Irena Chvatalova; Sona Gregorova; Jiri Forejt
Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.
Genetics | 2008
Zdenek Trachtulec; Čestmír Vlček; Ondrej Mihola; Sona Gregorova; Vladana Fotopulosova; Jiri Forejt
Extensive linkage disequilibrium among classical laboratory strains represents an obstacle in the high-resolution haplotype mapping of mouse quantitative trait loci (QTL). To determine the potential of wild-derived mouse strains for fine QTL mapping, we constructed a haplotype map of a 250-kb region of the t-complex on chromosome 17 containing the Hybrid sterility 1 (Hst1) gene. We resequenced 33 loci from up to 80 chromosomes of five mouse (sub)species. Trans-species single-nucleotide polymorphisms (SNPs) were rare between Mus m. musculus (Mmmu) and Mus m. domesticus (Mmd). The haplotypes in Mmmu and Mmd differed and therefore strains from these subspecies should not be combined for haplotype-associated mapping. The haplotypes of t-chromosomes differed from all non-t Mmmu and Mmd haplotypes. Half of the SNPs and SN indels but only one of seven longer rearrangements found in classical laboratory strains were useful for haplotype mapping in the wild-derived M. m. domesticus. The largest Mmd haplotype block contained three genes of a highly conserved synteny. The lengths of the haplotype blocks deduced from 36 domesticus chromosomes were in tens of kilobases, suggesting that the wild-derived Mmd strains are suitable for fine interval-specific mapping.
Comparative and Functional Genomics | 2003
Jiri Forejt; Tomas Vacik; Sona Gregorova
All of the mouse models of human trisomy 21 syndrome that have been studied so far are based on segmental trisomies, encompassing, to a varying extent, distal chromosome 16. Their comparison with one or more unrelated and non-overlapping segmental trisomies may help to distinguish the effects of specific triplicated genes from the phenotypes caused by less specific developmental instability mechanisms. In this paper, the Ts43H segmental trisomy of mouse chromosome 17 is presented as such an alternative model. The trisomy stretches over 32.5 Mb of proximal chromosome 17 and includes 486 genes. The triplicated interval carries seven blocks of synteny with five human chromosomes. The block syntenic to human chromosome 21 contains 20 genes.
eLife | 2018
Sona Gregorova; Vaclav Gergelits; Irena Chvatalova; Tanmoy Bhattacharyya; Barbora Valiskova; Vladana Fotopulosova; Petr Jansa; Diana Wiatrowska; Jiri Forejt
Hybrid sterility is one of the reproductive isolation mechanisms leading to speciation. Prdm9, the only known vertebrate hybrid-sterility gene, causes failure of meiotic chromosome synapsis and infertility in male hybrids that are the offspring of two mouse subspecies. Within species, Prdm9 determines the sites of programmed DNA double-strand breaks (DSBs) and meiotic recombination hotspots. To investigate the relation between Prdm9-controlled meiotic arrest and asynapsis, we inserted random stretches of consubspecific homology on several autosomal pairs in sterile hybrids, and analyzed their ability to form synaptonemal complexes and to rescue male fertility. Twenty-seven or more megabases of consubspecific (belonging to the same subspecies) homology fully restored synapsis in a given autosomal pair, and we predicted that two or more DSBs within symmetric hotspots per chromosome are necessary for successful meiosis. We hypothesize that impaired recombination between evolutionarily diverged chromosomes could function as one of the mechanisms of hybrid sterility occurring in various sexually reproducing species.