Sona Moradi
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sona Moradi.
Nanotechnology | 2013
Sona Moradi; Saeid Kamal; Peter Englezos; Savvas G. Hatzikiriakos
This work studies in detail the effect of femtosecond laser irradiation process parameters (fluence and scanning speed) on the hydrophobicity of the resulting micro/nano-patterned morphologies on stainless steel. Depending on the laser parameters, four distinctly different nano-patterns were produced, namely nano-rippled, parabolic-pillared, elongated sinusoidal-pillared and triple roughness nano-structures. All of the produced structures were classified according to a newly defined parameter, the laser intensity factor (LIF); by increasing the LIF, the ablation rate and periodicity of the asperities increase. In order to decrease the surface energy, all of the surfaces were coated with a fluoroalkylsilane agent. Analysis of the wettability revealed enhanced superhydrophobicity for most of these structures, particularly those possessing the triple roughness pattern that also exhibited low contact angle hysteresis. The high permanent superhydrophobicity of this pattern is due to the special micro/nano-structure of the surface that facilitates the Cassie-Baxter state.
Langmuir | 2014
Sona Moradi; Peter Englezos; Savvas G. Hatzikiriakos
A two-dimensional (2D) thermodynamic model is proposed to predict the contact angle (CA) and contact angle hysteresis (CAH) of different types of surface geometries, particularly those with asperities having nonflattened tops. The model is evaluated by micro/nano sinusoidal and parabolic patterns fabricated by laser ablation. These microstructures are analyzed thermodynamically through the use of the Gibbs free energy to obtain the equilibrium contact angle (CA) and contact angle hysteresis (CAH). The effects of the geometrical details of two types of microstructures on maximizing the superhydrophobicity of the nanopatterned surface are also discussed in an attempt to design surfaces with desired and/or optimum wetting characteristics. The analysis of the various surfaces reveals the important geometrical parameters that may lead to the lotus effect (high CA > 150° and low CAH < 10°) or petal effect (high CA > 150° and high CAH ≫ 10°).
ACS Applied Materials & Interfaces | 2016
Sona Moradi; Narges Hadjesfandiari; Salma Fallah Toosi; Jayachandran N. Kizhakkedathu; Savvas G. Hatzikiriakos
In order to design antithrombotic implants, the effect of extreme wettability (superhydrophilicity to superhydrophobicity) on the biocompatibility of the metallic substrates (stainless steel and titanium) was investigated. The wettability of the surface was altered by chemical treatments and laser ablation methods. The chemical treatments generated different functionality groups and chemical composition as evident from XPS analysis. The micro/nanopatterning by laser ablation resulted in three different pattern geometry and different surface roughness and consequently wettability. The patterned surface were further modified with chemical treatments to generate a wide range of surface wettability. The influence of chemical functional groups, pattern geometry, and surface wettability on protein adsorption and platelet adhesion was studied. On chemically treated flat surfaces, the type of hydrophilic treatment was shown to be a contributing factor that determines the platelet adhesion, since the hydrophilic oxidized substrates exhibit less platelet adhesion in comparison to the control untreated or acid treated surfaces. Also, the surface morphology, surface roughness, and superhydrophobic character of the surfaces are contributing factors to platelet adhesion on the surface. Our results show that superhydrophobic cauliflower-like patterns are highly resistant to platelet adhesion possibly due to the stability of Cassie-Baxter state for this pattern compared to others. Our results also show that simple surface treatments on metals offer a novel way to improve the hemocompatibility of metallic substrates.
Colloid and Polymer Science | 2013
Sona Moradi; Peter Englezos; Savvas G. Hatzikiriakos
Irradiation of metallic surfaces using ultra-short pulse laser results in a dual-scale structure. While metallic surfaces are superhydrophilic immediately after laser irradiation, prolonged exposure to air renders surfaces superhydrophobic due to surface reactions and deposition of carbonaceous materials onto the surface. In this work, we have fabricated a paraboloid microstructure, which is analyzed thermodynamically through the use of the Gibbs free energy to obtain the equilibrium contact angle and contact angle hysteresis. The effects of the geometrical details on maximizing the superhydrophobicity of the nanopatterned surface are also discussed in an attempt to design surfaces with desired and/or optimum wetting characteristics.
ACS Applied Materials & Interfaces | 2017
Sawsen Zouaghi; Thierry Six; Séverine Bellayer; Sona Moradi; Savvas G. Hatzikiriakos; Thomas Dargent; Vincent Thomy; Yannick Coffinier; Christophe André; Guillaume Delaplace; Maude Jimenez
Fouling is a widespread and costly issue, faced by all food-processing industries. Particularly, in the dairy sector, where thermal treatments are mandatory to ensure product safety, heat-induced fouling represents up to 80% of the total production costs. Significant environmental impacts, due the massive consumption of water and energy, are also to deplore. Fouling control solutions are thus desperately needed, as they would lead to substantial financial gains as well as tremendous progress toward eco-responsible processes. This work aims at presenting a novel and very promising dairy fouling-mitigation strategy, inspired by nature, and to test its antifouling performances in real industrial conditions. Slippery liquid-infused surfaces were successfully designed directly on food grade stainless steel, via femtosecond laser ablation, followed by fluorosilanization and impregnation with an inert perfluorinated oil. Resulting hydrophobic surfaces (water contact angle of 112°) exhibited an extremely slippery nature (contact angle hysteresis of 0.6°). Outstanding fouling-release performances were obtained for these liquid-infused surfaces as absolutely no trace of dairy deposit was found after 90 min of pasteurization test in pilot-scale equipment followed by a short water rinse.
Soft Matter | 2016
Marzieh Ebrahimi; Vinod Kumar Konaganti; Sona Moradi; Antonios K. Doufas; Savvas G. Hatzikiriakos
The slip behavior of high-density polyethylenes (HDPEs) is studied over surfaces of different topology and surface energy. Laser ablation has been used to micro/nano-pattern the surface of dies in order to examine the effect of surface roughness on slip. In addition, fluoroalkyl silane-based coatings on smooth and patterned substrates were used to understand the effect of surface energy on slip. Surface roughness and surface energy effects were incorporated into the double reptation slip model (Ebrahimi et al., J. Rheol., 2015, 59, 885-901) in order to predict the slip velocity of studied polymers on different substrates. It was found that for dies with rough surfaces, polymer melt penetrates into the cavities of the substrate (depending on the depth and the distance between the asperities), thus decreasing wall slip. On the other hand, silanization of the surface increases the slip velocity of polymers in the case of smooth die, although it has a negligible effect on rough dies. Interestingly, the slip velocity of the studied polymers on various substrates of different degrees of roughness and surface energy, were brought into a mastercurve by modifying the double reptation slip velocity model.
Applied Surface Science | 2015
Salma Falah Toosi; Sona Moradi; Saeid Kamal; Savvas G. Hatzikiriakos
Applied Surface Science | 2016
Salma Falah Toosi; Sona Moradi; Marzieh Ebrahimi; Savvas G. Hatzikiriakos
Surface Innovations | 2015
Sona Moradi; Savvas G. Hatzikiriakos; Saeid Kamal
Surface Innovations | 2015
Sona Moradi; Saeid Kamal; Savvas G. Hatzikiriakos