Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sona Pandey is active.

Publication


Featured researches published by Sona Pandey.


Cell | 2009

Two Novel GPCR-Type G Proteins Are Abscisic Acid Receptors in Arabidopsis

Sona Pandey; David C. Nelson; Sarah M. Assmann

In plants, G proteins modulate signaling by the stress hormone, abscisic acid (ABA). We identify and characterize two novel Arabidopsis proteins that show homology to an orphan vertebrate GPCR (GPR89) and interact with the sole Arabidopsis G protein alpha subunit, GPA1, but also have intrinsic GTP-binding and GTPase activity. We have named these proteins GPCR-type G proteins (GTG1 and GTG2). Arabidopsis mutants lacking both GTG1 and GTG2 exhibit ABA hyposensitivity. GTG1 and GTG2 bind ABA specifically. The GDP-bound form of the GTGs exhibits greater ABA binding than the GTP-bound form, the GTPase activity of the GTGs is inhibited by GPA1, and gpa1 null mutants exhibit ABA-hypersensitive phenotypes. These results predict that, unusually, it is the GDP-bound, not the GTP-bound, form of the GTGs that actively relays the signal. We propose that GTG proteins function both as a new type of G protein and as a class of membrane-localized ABA receptors.


The Plant Cell | 2004

The Arabidopsis Putative G Protein-Coupled Receptor GCR1 Interacts with the G Protein a Subunit GPA1 and Regulates Abscisic Acid Signaling

Sona Pandey; Sarah M. Assmann

Heterotrimeric G proteins composed of α, β, and γ subunits link ligand perception by G protein–coupled receptors (GPCRs) with downstream effectors, providing a ubiquitous signaling mechanism in eukaryotes. The Arabidopsis thaliana genome encodes single prototypical Gα (GPA1) and Gβ (AGB1) subunits, and two probable Gγ subunits (AGG1 and AGG2). One Arabidopsis gene, GCR1, encodes a protein with significant sequence similarity to nonplant GPCRs and a predicted 7-transmembrane domain structure characteristic of GPCRs. However, whether GCR1 actually interacts with GPA1 was unknown. We demonstrate by in vitro pull-down assays, by yeast split-ubiquitin assays, and by coimmunoprecipitation from plant tissue that GCR1 and GPA1 are indeed physically coupled. GCR1–GPA1 interaction depends on intracellular domains of GCR1. gcr1 T-DNA insertional mutants exhibit hypersensitivity to abscisic acid (ABA) in assays of root growth, gene regulation, and stomatal response. gcr1 guard cells are also hypersensitive to the lipid metabolite, sphingosine-1-phosphate (S1P), which is a transducer of the ABA signal upstream of GPA1. Because gpa1 mutants exhibit insensitivity in aspects of guard cell ABA and S1P responses, whereas gcr1 mutants exhibit hypersensitivity, GCR1 may act as a negative regulator of GPA1-mediated ABA responses in guard cells.


Plant Physiology | 2006

G-Protein Complex Mutants Are Hypersensitive to Abscisic Acid Regulation of Germination and Postgermination Development

Sona Pandey; Jin-Gui Chen; Alan M. Jones; Sarah M. Assmann

Abscisic acid (ABA) plays regulatory roles in a host of physiological processes throughout plant growth and development. Seed germination, early seedling development, stomatal guard cell functions, and acclimation to adverse environmental conditions are key processes regulated by ABA. Recent evidence suggests that signaling processes in both seeds and guard cells involve heterotrimeric G proteins. To assess new roles for the Arabidopsis (Arabidopsis thaliana) Gα subunit (GPA1), the Gβ subunit (AGB1), and the candidate G-protein-coupled receptor (GCR1) in ABA signaling during germination and early seedling development, we utilized knockout mutants lacking one or more of these components. Our data show that GPA1, AGB1, and GCR1 each negatively regulates ABA signaling in seed germination and early seedling development. Plants lacking AGB1 have greater ABA hypersensitivity than plants lacking GPA1, suggesting that AGB1 is the predominant regulator of ABA signaling and that GPA1 affects the efficacy of AGB1 execution. GCR1 acts upstream of GPA1 and AGB1 for ABA signaling pathways during germination and early seedling development: gcr1 gpa1 double mutants exhibit a gpa1 phenotype and agb1 gcr1 and agb1 gcr1 gpa1 mutants exhibit an agb1 phenotype. Contrary to the scenario in guard cells, where GCR1 and GPA1 have opposite effects on ABA signaling during stomatal opening, GCR1 acts in concert with GPA1 and AGB1 in ABA signaling during germination and early seedling development. Thus, cell- and tissue-specific functional interaction in response to a given signal such as ABA may determine the distinct pathways regulated by the individual members of the G-protein complex.


FEBS Letters | 2007

Roles of ion channels and transporters in guard cell signal transduction

Sona Pandey; Wei Zhang; Sarah M. Assmann

Stomatal complexes consist of pairs of guard cells and the pore they enclose. Reversible changes in guard cell volume alter the aperture of the pore and provide the major regulatory mechanism for control of gas exchange between the plant and the environment. Stomatal movement is facilitated by the activity of ion channels and ion transporters found in the plasma membrane and vacuolar membrane of guard cells. Progress in recent years has elucidated the molecular identities of many guard cell transport proteins, and described their modulation by various cellular signal transduction components during stomatal opening and closure prompted by environmental and endogenous stimuli.


Nature | 2002

Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase

Jiaxu Li; Toshinori Kinoshita; Sona Pandey; Carl K.-Y. Ng; Steven P. Gygi; Ken-ichiro Shimazaki; Sarah M. Assmann

Protein kinases are involved in stress signalling in both plant and animal systems. The hormone abscisic acid mediates the responses of plants to stresses such as drought, salinity and cold. Abscisic-acid-activated protein kinase (AAPK)—found in guard cells, which control stomatal pores—has been shown to regulate plasma membrane ion channels. Here we show that AAPK-interacting protein 1 (AKIP1), with sequence homology to heterogeneous nuclear RNA-binding protein A/B, is a substrate of AAPK. AAPK-dependent phosphorylation is required for the interaction of AKIP1 with messenger RNA that encodes dehydrin, a protein implicated in cell protection under stress conditions. AAPK and AKIP1 are present in the guard-cell nucleus, and in vivo treatment of such cells with abscisic acid enhances the partitioning of AKIP1 into subnuclear foci which are reminiscent of nuclear speckles. These results show that phosphorylation-regulated RNA target discrimination by heterogeneous nuclear RNA-binding proteins may be a general phenomenon in eukaryotes, and implicate a plant hormone in the regulation of protein dynamics during rapid subnuclear reorganization.


Plant Physiology | 2004

GCR1 Can Act Independently of Heterotrimeric G-Protein in Response to Brassinosteroids and Gibberellins in Arabidopsis Seed Germination

Jin-Gui Chen; Sona Pandey; Jirong Huang; Jose M. Alonso; Joseph R. Ecker; Sarah M. Assmann; Alan M. Jones

Signal recognition by seven-transmembrane (7TM) cell-surface receptors is typically coupled by heterotrimeric G-proteins to downstream effectors in metazoan, fungal, and amoeboid cells. Some responses perceived by 7TM receptors in amoeboid cells and possibly in human cells can initiate downstream action independently of heterotrimeric G-proteins. Plants use heterotrimeric G-protein signaling in the regulation of growth and development, particularly in hormonal control of seed germination, but it is not yet clear which of these responses utilize a 7TM receptor. Arabidopsis GCR1 has a predicted 7TM-spanning domain and other features characteristic of 7TM receptors. Loss-of-function gcr1 mutants indicate that GCR1 plays a positive role in gibberellin- (GA) and brassinosteroid- (BR) regulated seed germination. The null mutants of GCR1 are less sensitive to GA and BR in seed germination. This phenotype is similar to that previously observed for transcript null mutants in the Gα-subunit, gpa1. However, the reduced sensitivities toward GA and BR in the single gcr1, gpa1, and agb1 (heterotrimeric G-protein β-subunit) mutants are additive or synergistic in the double and triple mutants. Thus, GCR1, unlike a typical 7TM receptor, apparently acts independently of the heterotrimeric G-protein in at least some aspects of seed germination, suggesting that this alternative mode of 7TM receptor action also functions in the plant kingdom.


BMC Genomics | 2011

Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

Rui-Sheng Wang; Sona Pandey; Song Li; Timothy E. Gookin; Zhixin Zhao; Réka Albert; Sarah M. Assmann

BackgroundIn the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues.ResultsThe 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets, the type 2C protein phosphatases. Our data also provide evidence for cross-talk at the transcriptional level between ABA and another hormonal inhibitor of stomatal opening, methyl jasmonate.ConclusionsOur results engender new insights into the basic cell biology of guard cells, reveal common and unique elements of ABA-regulation of gene expression in guard cells, and set the stage for targeted biotechnological manipulations to improve plant water use efficiency.


Molecular Systems Biology | 2010

Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action.

Sona Pandey; Rui-Sheng Wang; Liza Wilson; Song Li; Zhixin Zhao; Timothy E. Gookin; Sarah M. Assmann; Réka Albert

Heterotrimeric G‐proteins mediate crucial and diverse signaling pathways in eukaryotes. Here, we generate and analyze microarray data from guard cells and leaves of G‐protein subunit mutants of the model plant Arabidopsis thaliana, with or without treatment with the stress hormone, abscisic acid. Although G‐protein control of the transcriptome has received little attention to date in any system, transcriptome analysis allows us to search for potentially uncommon yet significant signaling mechanisms. We describe the theoretical Boolean mechanisms of G‐protein × hormone regulation, and then apply a pattern matching approach to associate gene expression profiles with Boolean models. We find that (1) classical mechanisms of G‐protein signaling are well represented. Conversely, some theoretical regulatory modes of the G‐protein are not supported; (2) a new mechanism of G‐protein signaling is revealed, in which Gβ regulates gene expression identically in the presence or absence of Gα; (3) guard cells and leaves favor different G‐protein modes in transcriptome regulation, supporting system specificity of G‐protein signaling. Our method holds significant promise for analyzing analogous ‘switch‐like’ signal transduction events in any organism.


Critical Reviews in Plant Sciences | 2000

Calcium signaling : Linking environmental signals to cellular functions

Sona Pandey; S. B. Tiwari; Kailash C. Upadhyaya; Sudhir K. Sopory

Topics discussed in this review include Ca in signal-response coupling and the specificity of Ca 2+ signals. It is concluded that Ca is the most important signalling molecule in plants. The source of Ca and the type of cell responding to a particular signal confers specificity at the primary level. At other levels, specificity is achieved by the strength of the Ca signal and the specific patterns of Ca change. Another level of control is achieved by changes in activity of various other proteins and factors that become activated or modulated by changes in Ca levels. Ca-dependent kinases and phosphatases belong to this category and are main components of signal response coupling. Changes in the level of other factors in concert with Ca also activate a specific set of proteins, and this could also be involved in contribution to the specificity of signalling. Ca directly affecting the expression of certain genes gives another level of control on specificity. Other components in the regulation of Ca signalling are also discussed.


Plant Journal | 2008

Regulation of root‐wave response by extra large and conventional G proteins in Arabidopsis thaliana

Sona Pandey; Gabriele B. Monshausen; Lei Ding; Sarah M. Assmann

Heterotrimeric G proteins composed of alpha, beta and gamma subunits regulate a number of fundamental processes concerned with growth and development in plants. In addition to the canonical heterotrimeric G proteins, plants also contain a small family of extra large G proteins (XLGs) that show significant similarity to the G-protein alpha subunit in their C-terminal regions. In this paper we show that one of the three XLG genes, XLG3, and the Gbeta subunit (AGB1) of the Arabidopsis G-protein heterotrimer are specifically involved in the regulation of a subset of root morphological and growth responses. Based on analysis of T-DNA insertional mutant phenotypes, XLG3 and AGB1 each positively regulate root waving and root skewing. Since these responses are regulated by physical as well as physiological cues, we assessed the roles of AGB1 and XLG3 in gravitropism, thigmotropism and hormonal responses. Our data show that mutants lacking either XLG3 or AGB1 genes are hypersensitive to ethylene and show growth responses consistent with alterations in auxin transport, while maintaining an essentially wild-type response to the physical cues of gravity and touch. These results suggest that XLG3 and AGB1 proteins regulate the hormonal determinants of root-waving and root-skewing responses in plants and possibly interact in a tissue-specific or signal-specific manner. Because plants harboring knockout mutations in the Galpha subunit gene, GPA1, exhibit wild-type root waving and skewing, our results may indicate that the AGB1 subunit functions in these processes without formation of a classic Galphabetagamma heterotrimer.

Collaboration


Dive into the Sona Pandey's collaboration.

Top Co-Authors

Avatar

Swarup Roy Choudhury

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Sarah M. Assmann

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Dieter Hackenberg

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Sudhir K. Sopory

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Corey S. Westfall

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Jez

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sophie Alvarez

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Zhixin Zhao

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anitha Vijayakumar

Donald Danforth Plant Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge