Sona Taheri
Federation University Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sona Taheri.
Neural Computing and Applications | 2014
Sona Taheri; John Yearwood; Musa Mammadov; Sattar Seifollahi
The Naive Bayes classifier is a popular classification technique for data mining and machine learning. It has been shown to be very effective on a variety of data classification problems. However, the strong assumption that all attributes are conditionally independent given the class is often violated in real-world applications. Numerous methods have been proposed in order to improve the performance of the Naive Bayes classifier by alleviating the attribute independence assumption. However, violation of the independence assumption can increase the expected error. Another alternative is assigning the weights for attributes. In this paper, we propose a novel attribute weighted Naive Bayes classifier by considering weights to the conditional probabilities. An objective function is modeled and taken into account, which is based on the structure of the Naive Bayes classifier and the attribute weights. The optimal weights are determined by a local optimization method using the quasisecant method. In the proposed approach, the Naive Bayes classifier is taken as a starting point. We report the results of numerical experiments on several real-world data sets in binary classification, which show the efficiency of the proposed method.
Pattern Recognition | 2016
Adil M. Bagirov; Sona Taheri; Julien Ugon
Abstract This paper introduces an algorithm for solving the minimum sum-of-squares clustering problems using their difference of convex representations. A non-smooth non-convex optimization formulation of the clustering problem is used to design the algorithm. Characterizations of critical points, stationary points in the sense of generalized gradients and inf-stationary points of the clustering problem are given. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.
International Journal of Applied Mathematics and Computer Science | 2013
Sona Taheri; Musa Mammadov
Abstract Naive Bayes is among the simplest probabilistic classifiers. It often performs surprisingly well in many real world applications, despite the strong assumption that all features are conditionally independent given the class. In the learning process of this classifier with the known structure, class probabilities and conditional probabilities are calculated using training data, and then values of these probabilities are used to classify new observations. In this paper, we introduce three novel optimization models for the naive Bayes classifier where both class probabilities and conditional probabilities are considered as variables. The values of these variables are found by solving the corresponding optimization problems. Numerical experiments are conducted on several real world binary classification data sets, where continuous features are discretized by applying three different methods. The performances of these models are compared with the naive Bayes classifier, tree augmented naive Bayes, the SVM, C4.5 and the nearest neighbor classifier. The obtained results demonstrate that the proposed models can significantly improve the performance of the naive Bayes classifier, yet at the same time maintain its simple structure.
European Journal of Operational Research | 2017
Napsu Karmitsa; Adil M. Bagirov; Sona Taheri
Clustering is one of the most important tasks in data mining. Recent developments in computer hardware allow us to store in random access memory (RAM) and repeatedly read data sets with hundreds of thousands and even millions of data points. This makes it possible to use conventional clustering algorithms in such data sets. However, these algorithms may need prohibitively large computational time and fail to produce accurate solutions. Therefore, it is important to develop clustering algorithms which are accurate and can provide real time clustering in large data sets. This paper introduces one of them. Using nonsmooth optimization formulation of the clustering problem the objective function is represented as a difference of two convex (DC) functions. Then a new diagonal bundle algorithm that explicitly uses this structure is designed and combined with an incremental approach to solve this problem. The method is evaluated using real world data sets with both large number of attributes and large number of data points. The proposed method is compared with two other clustering algorithms using numerical results.
Optimization Letters | 2015
Sona Taheri; Musa Mammadov
Bayesian Networks are increasingly popular methods of modeling uncertainty in artificial intelligence and machine learning. A Bayesian Network consists of a directed acyclic graph in which each node represents a variable and each arc represents probabilistic dependency between two variables. Constructing a Bayesian Network from data is a learning process that consists of two steps: learning structure and learning parameter. Learning a network structure from data is the most difficult task in this process. This paper presents a new algorithm for constructing an optimal structure for Bayesian Networks based on optimization. The algorithm has two major parts. First, we define an optimization model to find the better network graphs. Then, we apply an optimization approach for removing possible cycles from the directed graphs obtained in the first part which is the first of its kind in the literature. The main advantage of the proposed method is that the maximal number of parents for variables is not fixed a priory and it is defined during the optimization procedure. It also considers all networks including cyclic ones and then choose a best structure by applying a global optimization method. To show the efficiency of the algorithm, several closely related algorithms including unrestricted dependency Bayesian Network algorithm, as well as, benchmarks algorithms SVM and C4.5 are employed for comparison. We apply these algorithms on data classification; data sets are taken from the UCI machine learning repository and the LIBSVM.
Siam Journal on Optimization | 2018
Kaisa Joki; Adil M. Bagirov; Napsu Karmitsa; Marko M. Mäkelä; Sona Taheri
The aim of this paper is to introduce a new proximal double bundle method for unconstrained nonsmooth optimization, where the objective function is presented as a difference of two convex (DC) functions. The novelty in our method is a new escape procedure which enables us to guarantee approximate Clarke stationarity for solutions by utilizing the DC components of the objective function. This optimality condition is stronger than the criticality condition typically used in DC programming. Moreover, if a candidate solution is not approximate Clarke stationary, then the escape procedure returns a descent direction. With this escape procedure, we can avoid some shortcomings encountered when criticality is used. The finite termination of the double bundle method to an approximate Clarke stationary point is proved by assuming that the subdifferentials of DC components are polytopes. Finally, some encouraging numerical results are presented.
Optimization | 2015
Sona Taheri; Musa Mammadov; Sattar Seifollahi
New algorithms for solving unconstrained optimization problems are presented based on the idea of combining two types of descent directions: the direction of anti-gradient and either the Newton or quasi-Newton directions. The use of latter directions allows one to improve the convergence rate. Global and superlinear convergence properties of these algorithms are established. Numerical experiments using some unconstrained test problems are reported. Also, the proposed algorithms are compared with some existing similar methods using results of experiments. This comparison demonstrates the efficiency of the proposed combined methods.
Pattern Recognition | 2018
Napsu Karmitsa; Adil M. Bagirov; Sona Taheri
Abstract The aim of this paper is to design an algorithm based on nonsmooth optimization techniques to solve the minimum sum-of-squares clustering problems in very large data sets. First, the clustering problem is formulated as a nonsmooth optimization problem. Then the limited memory bundle method [Haarala et al., 2007] is modified and combined with an incremental approach to design a new clustering algorithm. The algorithm is evaluated using real world data sets with both the large number of attributes and the large number of data points. It is also compared with some other optimization based clustering algorithms. The numerical results demonstrate the efficiency of the proposed algorithm for clustering in very large data sets.
australasian data mining conference | 2011
Sona Taheri; Musa Mammadov; Adil M. Bagirov
Global Journal of Technology and Optimization | 2012
Sona Taheri; Musa Mammadov