Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sona Vasudevan is active.

Publication


Featured researches published by Sona Vasudevan.


BMC Bioinformatics | 2003

The COG database: an updated version includes eukaryotes

Roman L. Tatusov; Natalie D. Fedorova; John D. Jackson; Aviva R. Jacobs; Boris Kiryutin; Eugene V. Koonin; Dmitri M. Krylov; Raja Mazumder; Sergei L. Mekhedov; Anastasia N. Nikolskaya; B Sridhar Rao; Sergei Smirnov; Alexander V. Sverdlov; Sona Vasudevan; Yuri I. Wolf; Jodie J. Yin; Darren A. Natale

BackgroundThe availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies.ResultsWe describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after euk aryotic o rthologous g roups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted) proteins encoded in 66 genomes of unicellular organisms. The euk aryotic o rthologous g roups (KOGs) include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens), one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe), and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the KOG set is much greater than the ubiquitous portion of the COG set (~1% of the COGs). In part, this difference is probably due to the small number of included eukaryotic genomes, but it could also reflect the relative compactness of eukaryotes as a clade and the greater evolutionary stability of eukaryotic genomes.ConclusionThe updated collection of orthologous protein sets for prokaryotes and eukaryotes is expected to be a useful platform for functional annotation of newly sequenced genomes, including those of complex eukaryotes, and genome-wide evolutionary studies.


Current Opinion in Structural Biology | 2002

Trends in protein evolution inferred from sequence and structure analysis

L. Aravind; Raja Mazumder; Sona Vasudevan; Eugene V. Koonin

Complementary developments in comparative genomics, protein structure determination and in-depth comparison of protein sequences and structures have provided a better understanding of the prevailing trends in the emergence and diversification of protein domains. The investigation of deep relationships among different classes of proteins involved in key cellular functions, such as nucleic acid polymerases and other nucleotide-dependent enzymes, indicates that a substantial set of diverse protein domains evolved within the primordial, ribozyme-dominated RNA world.


Biochimica et Biophysica Acta | 2008

Intestinal epithelial CD98: an oligomeric and multifunctional protein.

Yutao Yan; Sona Vasudevan; Hang Thi Thu Nguyen; Didier Merlin

The intestinal epithelial cell-surface molecule, CD98 is a type II membrane glycoprotein. Molecular orientation studies have demonstrated that the C-terminal tail of human CD98 (hCD98), which contains a PDZ-binding domain, is extracellular. In intestinal epithelial cells, CD98 is covalently linked to an amino-acid transporter with which it forms a heterodimer. This heterodimer associates with beta(1)-integrin and intercellular adhesion molecular 1 (ICAM-1) to form a macromolecular complex in the basolateral membranes of polarized intestinal epithelial cells. This review focuses on the multifunctional roles of CD98, including involvement in extracellular signaling, adhesion/polarity, and amino-acid transporter expression in intestinal epithelia. A role for CD98 in intestinal inflammation, such as Intestinal Bowel Disease (IBD), is also proposed.


PLOS ONE | 2012

Proteome-wide analysis of single-nucleotide variations in the N-glycosylation sequon of human genes.

Raja Mazumder; Krishna Sudeep Morampudi; Mona Motwani; Sona Vasudevan; Radoslav Goldman

N-linked glycosylation is one of the most frequent post-translational modifications of proteins with a profound impact on their biological function. Besides other functions, N-linked glycosylation assists in protein folding, determines protein orientation at the cell surface, or protects proteins from proteases. The N-linked glycans attach to asparagines in the sequence context Asn-X-Ser/Thr, where X is any amino acid except proline. Any variation (e.g. non-synonymous single nucleotide polymorphism or mutation) that abolishes the N-glycosylation sequence motif will lead to the loss of a glycosylation site. On the other hand, variations causing a substitution that creates a new N-glycosylation sequence motif can result in the gain of glycosylation. Although the general importance of glycosylation is well known and acknowledged, the effect of variation on the actual glycoproteome of an organism is still mostly unknown. In this study, we focus on a comprehensive analysis of non-synonymous single nucleotide variations (nsSNV) that lead to either loss or gain of the N-glycosylation motif. We find that 1091 proteins have modified N-glycosylation sequons due to nsSNVs in the genome. Based on analysis of proteins that have a solved 3D structure at the site of variation, we find that 48% of the variations that lead to changes in glycosylation sites occur at the loop and bend regions of the proteins. Pathway and function enrichment analysis show that a significant number of proteins that gained or lost the glycosylation motif are involved in kinase activity, immune response, and blood coagulation. A structure-function analysis of a blood coagulation protein, antithrombin III and a protease, cathepsin D, showcases how a comprehensive study followed by structural analysis can help better understand the functional impact of the nsSNVs.


BMC Structural Biology | 2013

Structural and functional studies of S-adenosyl-L-methionine binding proteins: a ligand-centric approach

Rajaram Gana; Shruti Rao; Hongzhan Huang; Cathy H. Wu; Sona Vasudevan

BackgroundThe post-genomic era poses several challenges. The biggest is the identification of biochemical function for protein sequences and structures resulting from genomic initiatives. Most sequences lack a characterized function and are annotated as hypothetical or uncharacterized. While homology-based methods are useful, and work well for sequences with sequence identities above 50%, they fail for sequences in the twilight zone (<30%) of sequence identity. For cases where sequence methods fail, structural approaches are often used, based on the premise that structure preserves function for longer evolutionary time-frames than sequence alone. It is now clear that no single method can be used successfully for functional inference. Given the growing need for functional assignments, we describe here a systematic new approach, designated ligand-centric, which is primarily based on analysis of ligand-bound/unbound structures in the PDB. Results of applying our approach to S-adenosyl-L-methionine (SAM) binding proteins are presented.ResultsOur analysis included 1,224 structures that belong to 172 unique families of the Protein Information Resource Superfamily system. Our ligand-centric approach was divided into four levels: residue, protein/domain, ligand, and family levels. The residue level included the identification of conserved binding site residues based on structure-guided sequence alignments of representative members of a family, and the identification of conserved structural motifs. The protein/domain level included structural classification of proteins, Pfam domains, domain architectures, and protein topologies. The ligand level included ligand conformations, ribose sugar puckering, and the identification of conserved ligand-atom interactions. The family level included phylogenetic analysis.ConclusionWe found that SAM bound to a total of 18 different fold types (I-XVIII). We identified 4 new fold types and 11 additional topological arrangements of strands within the well-studied Rossmann fold Methyltransferases (MTases). This extends the existing structural classification of SAM binding proteins. A striking correlation between fold type and the conformation of the bound SAM (classified as types) was found across the 18 fold types. Several site-specific rules were created for the assignment of functional residues to families and proteins that do not have a bound SAM or a solved structure.


Virus Genes | 2009

Sequence signatures in envelope protein may determine whether flaviviruses produce hemorrhagic or encephalitic syndromes.

Winona C. Barker; Raja Mazumder; Sona Vasudevan; Jose-Luis Sagripanti; Cathy H. Wu

We analyzed the envelope proteins in pathogenic flaviviruses to determine whether there are sequence signatures associated with the tendency of viruses to produce hemorrhagic disease (H-viruses) or encephalitis (E-viruses). We found that, at the position corresponding to the glycosylated Asn-67 in dengue virus, asparagine (Asn) occurs in all seven viral species that cause hemorrhagic disease in humans. Furthermore, Asn was extremely rare at position 67 in six flaviviruses that cause encephalitis, being replaced by Asp in four of them. Of the 3,246 sequences from H- and E-viruses, we found that 2,916 sequences (90%) contained Asn in position 67 for H-viruses or Asp in position 67 for E-viruses. The change from Asn-67 that is prevalent in H-viruses to Asp-67 (common in E-viruses) contributes to a stronger electrostatically negative surface in the E-viruses as compared to the H-viruses. These findings should help predicting the disease potential of emerging and re-emerging flaviviruses and understanding the relationship between protein structure and disease outcome.


Database | 2012

Recent advances in biocuration: Meeting report from the Fifth International Biocuration Conference

Pascale Gaudet; Cecilia N. Arighi; Frederic B. Bastian; Alex Bateman; Judith A. Blake; Michael J. Cherry; Peter D’Eustachio; Robert D. Finn; Michelle G. Giglio; Lynette Hirschman; Renate Kania; William Klimke; María Martín; Ilene Karsch-Mizrachi; Monica Munoz-Torres; Darren A. Natale; Claire O’Donovan; Francis Ouellette; Kim D. Pruitt; Marc Robinson-Rechavi; Susanna-Assunta Sansone; Paul N. Schofield; Granger Sutton; Kimberly Van Auken; Sona Vasudevan; Cathy H. Wu; Jasmine Young; Raja Mazumder

The 5th International Biocuration Conference brought together over 300 scientists to exchange on their work, as well as discuss issues relevant to the International Society for Biocuration’s (ISB) mission. Recurring themes this year included the creation and promotion of gold standards, the need for more ontologies, and more formal interactions with journals. The conference is an essential part of the ISBs goal to support exchanges among members of the biocuration community. Next years conference will be held in Cambridge, UK, from 7 to 10 April 2013. In the meanwhile, the ISB website provides information about the societys activities (http://biocurator.org), as well as related events of interest.


The Journal of Membrane Biology | 2007

Extracellular Interaction between hCD98 and the PDZ Class II Domain of hCASK in Intestinal Epithelia

Yutao Yan; Sona Vasudevan; Hang Nguyen; Ulrich Bork; Shanthi V. Sitaraman; Didier Merlin

The extracellular domain of the glycoprotein-associated integrin hCD98 protrudes into the basolateral extracellular space of the intestine and contains a PDZ class II-binding domain (GLLLRFPYAA, amino acids 520–529). Protein-protein interaction studies in vitro as well as in human colonic sections and Caco2-BBE cells have revealed that hCD98 coimmunoprecipitated with the basolateral membrane-associated guanylate kinase hCASK and that this interaction occurred in a PDZ domain-dependent manner. These novel results, which provide the first evidence for a PDZ domain-dependent interaction between a membrane protein and an extracellular protein, open a new field of investigation related to extracellular signaling in cell biology.


PLOS Computational Biology | 2008

Structure-guided comparative analysis of proteins: principles, tools, and applications for predicting function.

Raja Mazumder; Sona Vasudevan

The main objective of this article was to define a ten-step procedure, largely guided by the percent-identity scale, that can be followed as a general rule for functional inference of an uncharacterized protein. This procedure is by no means exhaustive but can be used as an initial process for functional assignment. In many cases, additional clues and complementary information may be obtained from pathway analysis, operon information, and other non-homology based methods. We have demonstrated how by following the ten steps a function could be assigned for an uncharacterized conserved protein with its related sequences. In addition, the goal was to provide an overview of the available tools and databases to carry out comparative sequence and structural analysis.


International Journal of Molecular Sciences | 2015

Nucleotide-Induced Conformational Changes in Escherichia coli DnaA Protein Are Required for Bacterial ORC to Pre-RC Conversion at the Chromosomal Origin

Rahul Saxena; Sona Vasudevan; Digvijay Patil; Norah Ashoura; Julia E. Grimwade; Elliott Crooke

DnaA oligomerizes when bound to origins of chromosomal replication. Structural analysis of a truncated form of DnaA from Aquifex aeolicus has provided insight into crucial conformational differences within the AAA+ domain that are specific to the ATP- versus ADP- bound form of DnaA. In this study molecular docking of ATP and ADP onto Escherichia coli DnaA, modeled on the crystal structure of Aquifex aeolicus DnaA, reveals changes in the orientation of amino acid residues within or near the vicinity of the nucleotide-binding pocket. Upon limited proteolysis with trypsin or chymotrypsin ADP-DnaA, but not ATP-DnaA generated relatively stable proteolytic fragments of various sizes. Examined sites of limited protease susceptibility that differ between ATP-DnaA and ADP-DnaA largely reside in the amino terminal half of DnaA. The concentration of adenine nucleotide needed to induce conformational changes, as detected by these protease susceptibilities of DnaA, coincides with the conversion of an inactive bacterial origin recognition complex (bORC) to a replication efficient pre-replication complex (pre-RC) at the E. coli chromosomal origin of replication (oriC).

Collaboration


Dive into the Sona Vasudevan's collaboration.

Top Co-Authors

Avatar

Raja Mazumder

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren A. Natale

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Aviva R. Jacobs

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eugene V. Koonin

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Jodie J. Yin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John D. Jackson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexander V. Sverdlov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cathy H. Wu

University of Delaware

View shared research outputs
Top Co-Authors

Avatar

Dmitri M. Krylov

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge