Sonali Roy
Norwich Research Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sonali Roy.
The Plant Cell | 2014
Andrew Breakspear; Chengwu Liu; Sonali Roy; Nicola Stacey; Christian Rogers; Martin Trick; Giulia Morieri; Kirankumar S. Mysore; Jiangqi Wen; Giles E. D. Oldroyd; J. Allan Downie; Jeremy D. Murray
Transcriptome profiling of M. truncatula root hairs during the initial stages of rhizobial infection helps to interpret two decades of research on Medicago and provides a foundation for future studies on host-symbiont interactions in the rhizosphere. Nitrogen-fixing rhizobia colonize legume roots via plant-made intracellular infection threads. Genetics has identified some genes involved but has not provided sufficient detail to understand requirements for infection thread development. Therefore, we transcriptionally profiled Medicago truncatula root hairs prior to and during the initial stages of infection. This revealed changes in the responses to plant hormones, most notably auxin, strigolactone, gibberellic acid, and brassinosteroids. Several auxin responsive genes, including the ortholog of Arabidopsis thaliana Auxin Response Factor 16, were induced at infection sites and in nodule primordia, and mutation of ARF16a reduced rhizobial infection. Associated with the induction of auxin signaling genes, there was increased expression of cell cycle genes including an A-type cyclin and a subunit of the anaphase promoting complex. There was also induction of several chalcone O-methyltransferases involved in the synthesis of an inducer of Sinorhizobium meliloti nod genes, as well as a gene associated with Nod factor degradation, suggesting both positive and negative feedback loops that control Nod factor levels during rhizobial infection. We conclude that the onset of infection is associated with reactivation of the cell cycle as well as increased expression of genes required for hormone and flavonoid biosynthesis and that the regulation of auxin signaling is necessary for initiation of rhizobial infection threads.
Science | 2014
Alberto P. Macho; Benjamin Schwessinger; Vardis Ntoukakis; Alexandre Brutus; Cécile Segonzac; Sonali Roy; Yasuhiro Kadota; Man Ho Oh; Jan Sklenar; Paul Derbyshire; Rosa Lozano-Durán; Frederikke Gro Malinovsky; Jacqueline Monaghan; Frank L.H. Menke; Steven C. Huber; Sheng Yang He; Cyril Zipfel
Move and Countermove Receptors on plant cell surfaces are tuned to recognize molecular patterns associated with pathogenic bacteria. Macho et al. (p. 1509; published online 13 March) found that activation of one of these receptors in Arabidopsis results in phosphorylation of a specific tyrosine residue, which in turn triggers the plants immune response to the phytopathogen Pseudomonas syringae. P. syringae counters by secreting a specifically targeted phosphatase, thus stalling the plants immune response. A plant pathogen and its host compete for control over a key phosphorylation site in an innate immune receptor. Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell’s surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.
Plant Physiology | 2017
Sonali Roy; Fran Robson; Jodi Lilley; Chengwu Liu; Xiaofei Cheng; Jiangqi Wen; Simon Walker; Jongho Sun; Donna Cousins; Caitlin Bone; Malcolm J. Bennett; J. Allan Downie; Ranjan Swarup; Giles E. D. Oldroyd; Jeremy D. Murray
Genetic and molecular biological tools were used to show that MtLAX2 is required for not only lateral root formation but also nodulation, in Medicago truncatula. Most legume plants can form nodules, specialized lateral organs that form on roots, and house nitrogen-fixing bacteria collectively called rhizobia. The uptake of the phytohormone auxin into cells is known to be crucial for development of lateral roots. To test the role of auxin influx in nodulation we used the auxin influx inhibitors 1-naphthoxyacetic acid (1-NOA) and 2-NOA, which we found reduced nodulation of Medicago truncatula. This suggested the possible involvement of the AUX/LAX family of auxin influx transporters in nodulation. Gene expression studies identified MtLAX2, a paralogue of Arabidopsis (Arabidopsis thaliana) AUX1, as being induced at early stages of nodule development. MtLAX2 is expressed in nodule primordia, the vasculature of developing nodules, and at the apex of mature nodules. The MtLAX2 promoter contains several auxin response elements, and treatment with indole-acetic acid strongly induces MtLAX2 expression in roots. mtlax2 mutants displayed root phenotypes similar to Arabidopsis aux1 mutants, including altered root gravitropism, fewer lateral roots, shorter root hairs, and auxin resistance. In addition, the activity of the synthetic DR5-GUS auxin reporter was strongly reduced in mtlax2 roots. Following inoculation with rhizobia, mtlax2 roots developed fewer nodules, had decreased DR5-GUS activity associated with infection sites, and had decreased expression of the early auxin responsive gene ARF16a. Our data indicate that MtLAX2 is a functional analog of Arabidopsis AUX1 and is required for the accumulation of auxin during nodule formation in tissues underlying sites of rhizobial infection.
Frontiers in Plant Science | 2015
Da-Song Chen; Chengwu Liu; Sonali Roy; Donna Cousins; Nicola Stacey; Jeremy D. Murray
Genome-wide expression studies on nodulation have varied in their scale from entire root systems to dissected nodules or root sections containing nodule primordia (NP). More recently efforts have focused on developing methods for isolation of root hairs from infected plants and the application of laser-capture microdissection technology to nodules. Here we analyze two published data sets to identify a core set of infection genes that are expressed in the nodule and in root hairs during infection. Among the genes identified were those encoding phenylpropanoid biosynthesis enzymes including Chalcone-O-Methyltransferase which is required for the production of the potent Nod gene inducer 4′,4-dihydroxy-2-methoxychalcone. A promoter-GUS analysis in transgenic hairy roots for two genes encoding Chalcone-O-Methyltransferase isoforms revealed their expression in rhizobially infected root hairs and the nodule infection zone but not in the nitrogen fixation zone. We also describe a group of Rhizobially Induced Peroxidases whose expression overlaps with the production of superoxide in rhizobially infected root hairs and in nodules and roots. Finally, we identify a cohort of co-regulated transcription factors as candidate regulators of these processes.
Plant Signaling & Behavior | 2015
Chengwu Liu; Andrew Breakspear; Sonali Roy; Jeremy D. Murray
The transcriptomics approach to study gene expression in root hairs from M. truncatula has shed light on the developmental events during rhizobial infection and the underlying hormone responses. This approach revealed the induction of several cyclins and an aurora kinase which suggests that the cell-division machinery plays a role in rhizobial infection. Changes in the cell cycle in plants are governed by hormones, in particular auxin and cytokinin. Through gene expression and genetic analyses, we have shown auxin plays a role during rhizobial infection. Here we provide further analysis of the data showing the induction of a set of cytokinin signaling components. These include genes encoding 2 cytokinin-activating enzymes, the cytokinin receptor CRE1, and 5 type-A cytokinin response regulators. We discuss the possible interactions between auxin and cytokinin signaling during the infection process. We also consider a potential role for cytokinin signaling in rhizobial attachment.
Plant Physiology | 2017
Thomas C. de Bang; Peter K. Lundquist; Xinbin Dai; Clarissa Boschiero; Zhaohong Zhuang; Pooja Pant; Ivone Torres-Jerez; Sonali Roy; Joaquina Nogales; Vijaykumar Veerappan; Rebecca Dickstein; Michael K. Udvardi; Patrick Xuechun Zhao; Wolf-Rüdiger Scheible
Genome-wide annotation and RNA-seq analysis identify small secreted peptides responsive to nodulation and macronutrient limitations regulating root and nodule development in Medicago truncatula. Growing evidence indicates that small, secreted peptides (SSPs) play critical roles in legume growth and development, yet the annotation of SSP-coding genes is far from complete. Systematic reannotation of the Medicago truncatula genome identified 1,970 homologs of established SSP gene families and an additional 2,455 genes that are potentially novel SSPs, previously unreported in the literature. The expression patterns of known and putative SSP genes based on 144 RNA sequencing data sets covering various stages of macronutrient deficiencies and symbiotic interactions with rhizobia and mycorrhiza were investigated. Focusing on those known or suspected to act via receptor-mediated signaling, 240 nutrient-responsive and 365 nodulation-responsive Signaling-SSPs were identified, greatly expanding the number of SSP gene families potentially involved in acclimation to nutrient deficiencies and nodulation. Synthetic peptide applications were shown to alter root growth and nodulation phenotypes, revealing additional regulators of legume nutrient acquisition. Our results constitute a powerful resource enabling further investigations of specific SSP functions via peptide treatment and reverse genetics.
bioRxiv | 2017
Sebastian Pfeilmeier; J P George; Alice Morel; Sonali Roy; Matthew Smoker; Lena Stansfeld; Allan Downie; Nemo Peeters; Jacob G. Malone; Cyril Zipfel
Interfamily transfer of plant pattern recognition receptors (PRRs) represents a promising biotechnological approach to engineer broad-spectrum, and potentially durable, disease resistance in crops. It is however unclear whether new recognition specificities to given pathogen-associated molecular patterns (PAMPs) affect the interaction of the recipient plant with beneficial microbes. To test this in a direct reductionist approach, we transferred the Brassicaceae-specific PRR ELONGATION FACTOR-THERMO UNSTABLE RECEPTOR (EFR) from Arabidopsis thaliana to the legume Medicago truncatula, conferring recognition of the bacterial EF-Tu protein. Constitutive EFR expression led to EFR accumulation and activation of immune responses upon treatment with the EF-Tu-derived elf18 peptide in leaves and roots. The interaction of M. truncatula with the bacterial symbiont Sinorhizobium meliloti is characterized by the formation of root nodules that fix atmospheric nitrogen. Although nodule numbers were slightly reduced at an early stage of the infection in EFR-Medicago when compared to control lines, nodulation was similar in all lines at later stages. Furthermore, nodule colonization by rhizobia, and nitrogen fixation were not compromised by EFR expression. Importantly, the M. truncatula lines expressing EFR were substantially more resistant to the root bacterial pathogen Ralstonia solanacearum. Our data suggest that the transfer of EFR to M. truncatula does not impede root nodule symbiosis, but has a positive impact on disease resistance against a bacterial pathogen. In addition, our results indicate that Rhizobium can either avoid PAMP recognition during the infection process, or is able to actively suppress immune signaling. Significance Statement Crop engineering helps reducing the economic and environmental costs of plant disease. The genetic transfer of immune receptors across plant species is a promising biotechnological approach to increase disease resistance. Surface-localized pattern-recognition receptors (PRRs), which detect conserved characteristic microbial features, are functional in heterologous taxonomically-diverse plant species, and confer broad-spectrum disease resistance. It was unclear whether PRR transfer negatively impacts the association of the recipient plants with symbiotic microbes. Here, we show that a legume engineered with a novel PRR recognizing a conserved bacterial protein becomes more resistant to an important bacterial pathogen without significant impact on nitrogen-fixing symbiosis with rhizobia. This finding is of particular relevance as attempts to transfer this important symbiosis into non-legume plants are ongoing.
The Plant Cell | 2018
Sonali Roy
Partner selection is a critical step that must occur early during establishment of root nodule symbiosis (RNS). RNS refers to the mutualistic interaction between legumes and some nonlegumes with soil bacteria that help convert atmospheric nitrogen into plant usable ammonia. In legumes such as
The Plant Cell | 2018
Sonali Roy
Nutrients are rarely distributed homogenously in soil. Consequently, plants have local and long-distance signaling systems in place to monitor and coordinate both demand and supply of essential macronutrients such as nitrogen (N). The “N-demand” long-distance signal emanates from a section of
The Plant Cell | 2018
Sonali Roy
![Figure][1] At the crux of understanding plant biology lies the intricate hormone circuitry coordinating morphological and physiological changes as plants grow and adapt to their environment. As a curious middle school student in Locust, New Jersey, Professor Joseph Kieber, then a proud