Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soner Soylu is active.

Publication


Featured researches published by Soner Soylu.


International Journal of Food Microbiology | 2010

In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea

Emine Mine Soylu; Şener Kurt; Soner Soylu

The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating fungal pathogen Botrytis cinerea, the causal agent of grey mould disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic plants, which belong to the Lamiacea family such as origanum (Origanum syriacum L. var. bevanii), lavender (Lavandula stoechas L. var. stoechas) and rosemary (Rosmarinus officinalis L.), were investigated against B. cinerea. Contact and volatile phase effects of different concentrations of the essential oils were found to inhibit the growth of B. cinerea in a dose-dependent manner. Volatile phase effects of essential oils were consistently found to be more effective on fungal growth than contact phase effect. A volatile vapour of origanum oil at 0.2 μg/ml air was found to completely inhibit the growth of B. cinerea. Complete growth inhibition of pathogen by essential oil of lavender and rosemary was, however, observed at 1.6 μg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, origanum oil at 12.8 μg/ml was found to inhibit the growth of B. cinerea completely. Essential oils of rosemary and lavender were inhibitory at relatively higher concentrations (25.6 μg/ml). Spore germination and germ tube elongation were also inhibited by the essential oils tested. Light and scanning electron microscopic (SEM) observations revealed that the essential oils cause considerable morphological degenerations of the fungal hyphae such as cytoplasmic coagulation, vacuolations, hyphal shrivelling and protoplast leakage and loss of conidiation. In vivo assays with the origanum essential oil, being the most efficient essential oil, under greenhouse conditions using susceptible tomato plants resulted in good protection against grey mould severity especially as a curative treatment. This study has demonstrated that the essential oils are potential and promising antifungal agents which could be used as biofungicide in the protection of tomato against B. cinerea.


Journal of Applied Microbiology | 2007

Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum

Soner Soylu; H. Yigitbas; Emine Mine Soylu; Şener Kurt

Aims:  The antifungal effects of essential oils of oregano (Origanum syriacum var. bevanii) and fennel (Foeniculum vulgare) were evaluated against Sclerotinia sclerotiorum. Effects of the essential oils on morphological structures of hyphae and sclerotia were studied under light and scanning electron microscopes (SEM).


Molecular Plant-microbe Interactions | 2004

Basal Defenses Induced in Pepper by Lipopolysaccharides Are Suppressed by Xanthomonas campestris pv. vesicatoria

Mansureh Keshavarzi; Soner Soylu; Ian Brown; Ulla Bonas; Michel Nicole; John Rossiter; John W. Mansfield

The nonpathogenic hrcC mutant of Xanthomonas campestris pv. vesicatoria 85-10::hrpA22 multiplied in pepper leaves if it was mixed with pathogenic strains of X. campestris pv. vesicatoria. Reactions to the mutant alone included localized deposition of phenolics and callose in papillae, and alterations to the plant cell wall leading to increased electron density. Electron microscopy showed that the localized responses were suppressed in the presence of wild-type bacteria but other wall changes occurred at some sites, involving cellulose-rich ingrowth of the wall. Multiplication of the hrp mutant in mixed inocula was confirmed by tagging 85-10::hrpA22 using immunocytochemical location of AvrBs3 expressed from the plasmid pD36. Elicitors of callose deposition and other wall changes were isolated from the hrcC mutant. Activity in extracts of bacteria was attributed to the presence of high molecular weight lipopolysaccharides (LPS). Wild-type X. campestris pv. vesicatoria suppressed induction of structural changes caused by purified LPS. Results obtained suggest that effector proteins produced by phytopathogenic bacteria and delivered by the type III secretion system may have a key role in suppressing the basal defense responses activated by bacterial LPS, which lead to restricted multiplication of nonpathogens such as hrp mutants.


Plant Science | 2003

Induction of disease resistance by the plant activator, acibenzolar-S-methyl (ASM), against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato seedlings

Soner Soylu; Ömür Baysal; E. Mine Soylu

The plant defence activator acibenzolar-S-methyl (benzo [1,2,3]thiadiazole-7-carbothioic acid-S-methyl ester, ASM; Bion 50 WG) was assayed on tomato seedlings for its ability to induce resistance against Clavibacter michiganensis subsp. michiganensis (Cmm), the causal agent of bacterial canker of tomato. Pre-treatment of plants with ASM reduced the severity of the disease as well as the growth of the bacteria in planta. In ASM-treated plants, reduction in disease severity (up to 75%) was correlated with suppression of bacterial growth (up to 68.2%) during the time course of infection. In plants treated with ASM, activities of peroxidase (POX) and glutathione peroxidase (GPX) were determined as markers of resistance. Applications of ASM induced a progressive and significant increase of both enzymes in locally treated tissues. Such responses were expressed earlier and with a much higher magnitude when ASM-treated seedlings were challenged with the pathogen, thus providing support to the concept that a signal produced by the pathogen is essential for triggering enhanced synthesis and accumulation of these enzymes. No such activities were observed in water-treated control plants. Therefore, the slower symptom development and reduction in bacterial growth in ASM-treated plants might be due to the increase in activity of both oxidative and antioxidative protection systems in planta.


Food Microbiology | 2008

Inactivation of Penicillum expansum in sour cherry juice, peach and apricot nectars by pulsed electric fields

Gulsun Akdemir Evrendilek; Fatih Mehmet Tok; E. Mine Soylu; Soner Soylu

Inhibitory effects of pulsed electric fields (PEF) on Penicillum expansum inoculated into sour cherry juice, apricot and peach nectars were determined based on germination tube elongation, spore germination rate, and light and scanning electron microscopy (SEM) observations in this study. After inoculation of juice/nectar samples with P. expansum spores at the level of 10(5)-10(6)cfu/mL, the samples were processed by bench scale PEF pulse generator as a function of differing electric field strengths (0, 13, 17, 20, 23, 27, 30 and 34kV/cm) and processing times (0, 62, 94, 123, 163, 198 and 218mus). Results revealed that with an increase in electric field strength and processing time, germination tube elongation and spore germination rate were completely inhibited. Light and SEM observations revealed considerable morphological alterations in fungal conidia such as cytoplasmic coagulation, vacuolations, shrinkage and protoplast leakage. PEF processing of juice/nectars was demonstrated to be effective in inactivating P. expansum. To our knowledge, this is the first study confirming the inhibitory effects of PEF on germination tube elongation and spore germination rate of P. expansum in fruit juice/nectars.


European Journal of Plant Pathology | 2007

Vegetative compatibility groups in Verticillium dahliae isolates from olive in western Turkey

Sibel Dervis; Latife Erten; Soner Soylu; Fatih Mehmet Tok; Sener Kurt; Mehmet Zülfü Yildiz; E. Mine Soylu

Verticillium wilt, caused by Verticillium dahliae, is the most serious disease in olive cultivation areas in western Turkey. Two hundred and eight isolates of V. dahliae from olive (Olea europea var. sativa) trees were taken for vegetative compatibility analysis using nitrate non-utilizing (nit) mutants. One isolate did not produce a nit mutant. Nit mutants of 207 isolates were tested against tester strains of internationally known vegetative compatibility groups (VCGs) 1A, 2A, 2B, 3, 4A and 4B, and also paired in many combinations among themselves. One hundred and eighty nine of the isolates (90.9%) were strongly compatible with T9, the tester strain of VCG1A, and thus were assigned to VCG1A. Eight isolates were assigned to VCG2A and four isolates to VCG4B. One isolate was heterokaryon self-incompatible (HSI) and five isolates could not be grouped to any of the VCGs tested. Pathogenicity assays were conducted on a susceptible olive cultivar (O. europea cv. Manzanilla) and a susceptible local cotton cultivar (Gossypium hirsutum cv. Çukurova 1518). Both cotton and olive inoculated with all VCG1A isolates showed defoliating symptoms in greenhouse tests. This is the first report on VCGs in V. dahliae from olive trees in Turkey which demonstrates that VCG1A of the cotton-defoliating type is the most commonly detected form from olive plants in the western part of Turkey.


Mycopathologia | 2004

Ultrastructural characterisation of the host–pathogen interface in white blister-infected Arabidopsis leaves

Soner Soylu

In this study transmission electron microscopy (TEM) was used to examine details of the host–pathogen interface in Arabidopsisthaliana cotyledons infected by Albugo candida, causal agent of white blister. After successful entry through stomatal pores, the pathogen developed a substomatal vesicle and subsequently produced intercellular hyphae. TEM observations revealed that coenocytic intercellular hyphae ramified and spread intercellularly throughout the host tissue forming several haustoria in host mesophyll cells. Intracellular haustoria were spherical and 4.5 μm in diameter. Each haustorium was connected to intercellular hyphae by a narrow, slender haustorium neck. The cytoplasm of the haustorium included the organelles characteristic of the pathogen. No obvious response was observed in host cells following formation of haustoria. Most of the mesophyll cells contained normal haustoria and the host cytoplasm displayed a high degree of structural integrity. Absence of host cell wall alteration and cell death in penetrated host cells suggest that the pathogen exerts considerable control over basic cellular processes and in this respect, response to this biotrophic Oomycete differs considerably from responses to other pathogens such as necrotrophs. Modification of the host plasma membrane (PM) along the cell wall and around the haustoria, was detected by applying the periodic acid-chromic acid-phosphotungstic acid (PACP) staining technique. After staining with PACP, the host PM was found to be intensely electron dense where it was adjacent to the host cell wall and the distal region of the haustorial neck. By contrast, the extrahaustorial membrane, where the host PM surrounded the haustorium, was consistently very lightly stained.


Euphytica | 2011

Determination of responses of different bean cultivars against races of Pseudomonas syringae pv phaseolicola , causal agent of halo blight of bean

İmam Adem Bozkurt; Soner Soylu

Use of resistant plant varieties combined with other disease management practices is regarded as the most practical approach to control of seed-borne bacterial disease agents. In this study, responses of different bean cultivars to nine different races of Pseudomonas syringae pv phaseolicola, the causal agent of bacterial halo blight of common bean (Phaseolus vulgaris L.), were determined. During compatible interaction in susceptible cultivars, virulent bacterial races caused water soaked lesion at sites of inoculation. Similar lesions developed in moderately resistant cultivars but symptoms were later associated with more tissue browning around the sites of inoculation. In contrast, the resistant response, produced the characteristic hypersensitive reaction (HR), was characterized as a small discrete browning and tissue collapse at site of inoculation. No local cultivars showed complete resistance to all races tested. Bean cultivars Sehirali-90 and Göynük-98 were found to be resistant or moderately resistant to five different bacterial races. Bean cultivar, Karacaşehir-90, on the other hand, was found to be resistant or moderately resistant to six different bacterial races. Analysis of bacterial growth and the accumulation of isoflavonoid bean phytoalexin, phaseollin in planta were carried out for tissues expressing compatible and incompatible interactions to enable a link to be made between reaction phenotypes and restriction of bacterial growth and phytoalexin accumulations. Development of the HR was clearly associated with the restricted multiplication of bacteria during incompatible interactions. A time-course accumulation analysis on pods treated with different races of bacterial agent showed that a strong correlation was observed between the timing and extent of cell death and accumulation of phaseollin, being rapid and extensive in incompatible interactions compared to compatible interaction.


Plant Disease | 2010

Comparison by Sequence-Based and Electron Microscopic Analyses of Fig mosaic virus Isolates Obtained from Field and Experimentally Inoculated Fig Plants

Kadriye Çağlayan; Çiğdem Ulubaş Serçe; Eminur Barutçu; Kamuran Kaya; Vicente Medina; M. Gazel; Soner Soylu; Oğuzhan Çalışkan

Fig mosaic disease (FMD) and the fig mite, Aceria ficus, are widespread in different fig growing provinces of Turkey. Fig trees (Ficus carica) cv. Bursa siyahı (D1) and an unknown seedling (D2) that showed typical FMD symptoms and was heavily infested by fig mites were used as donor plants for attempted mite transmissions to healthy fig seedlings. Transmission electron microscopy observations of donor plant samples prior to the transmission tests were performed and showed the presence of double membrane bodies (DMBs) in the palisade mesophyll cells. Electron microscopy of all experimentally inoculated fig seedlings showed the same bodies. This result reinforced the suggestion that an agent that elicits the production of DMBs in infected cells is involved in the etiology of FMD. Double-stranded (ds)RNA analyses were also performed from experimentally inoculated plants, and dsRNAs with sizes approximately 1.30 and 1.96 kb were obtained. Reverse transcription-polymerase chain reaction (RT-PCR) products of 468 and 298 bp specific to Fig mosaic virus (FMV) were amplified from both donor and experimentally inoculated plants. BLAST analyses of nucleotide sequences of these fragments showed 90% identity with FMV for the donor plant and 94 to 96% for experimentally inoculated plants. According to these results, FMV is present in both donor and experimentally inoculated plants in Turkey, and this virus is transmissible by A. ficus from fig plant to fig plant.


Phytoparasitica | 2008

Vegetative compatibility groups ofVerticillium dahliae from cotton in the southeastern anatolia region of Turkey

Sibel Dervis; Sener Kurt; Soner Soylu; Latife Erten; E. Mine Soylu; Mehmet Zülfü Yildiz; Fatih Mehmet Tok

Eighty isolates ofVerticillium dahliae from the southeastern Anatolia region and 20 isolates from the east Mediterranean region from wilted cotton plants were used for vegetative compatibility analysis employing nitrate non-utilizing mutants and reference tester strains of vegetative compatibility groups (VCGs) 1A, 2A, 2B, 3, 4A and 4B. Of the 100V. dahliae isolates, 49 were assigned to VCG1A, 39 to VCG2B, nine to VCG2A and three to VCG4B. Pathogenicity assays were conducted on susceptible cotton cv. Çukurova 1518 in the greenhouse. All VCG1A isolates induced defoliation and all VCG2B isolates caused partial defoliation symptoms. Isolates of VCG2A and VCG4B caused typical symptoms of leaf chlorosis without defoliation. This is the first report on VCGs ofV. dahliae in the southeastern Anatolia region of Turkey, which demonstrates that VCG1A of the cotton-defoliating type and VCG2B of the partially defoliating type are prevalent in this region.

Collaboration


Dive into the Soner Soylu's collaboration.

Top Co-Authors

Avatar

Sener Kurt

Mustafa Kemal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Şener Kurt

Mustafa Kemal University

View shared research outputs
Top Co-Authors

Avatar

E. Mine Soylu

Mustafa Kemal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Merve Kara

Mustafa Kemal University

View shared research outputs
Top Co-Authors

Avatar

Sibel Dervis

Mustafa Kemal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aysun Uysal

Mustafa Kemal University

View shared research outputs
Top Co-Authors

Avatar

Halit Yetisir

Mustafa Kemal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge