Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Song Bin Chang is active.

Publication


Featured researches published by Song Bin Chang.


Plant Journal | 2008

High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6

Dóra Szinay; Song Bin Chang; Ludmila Khrustaleva; Sander A. Peters; Elio Schijlen; Yuling Bai; Willem J. Stiekema; Roeland C. H. J. van Ham; Hans de Jong; René Klein Lankhorst

Within the framework of the International Solanaceae Genome Project, the genome of tomato (Solanum lycopersicum) is currently being sequenced. We follow a BAC-by-BAC approach that aims to deliver high-quality sequences of the euchromatin part of the tomato genome. BACs are selected from various libraries of the tomato genome on the basis of markers from the F2.2000 linkage map. Prior to sequencing, we validated the precise physical location of the selected BACs on the chromosomes by five-colour high-resolution fluorescent in situ hybridization (FISH) mapping. This paper describes the strategies and results of cytogenetic mapping for chromosome 6 using 75 seed BACs for FISH on pachytene complements. The cytogenetic map obtained showed discrepancies between the actual chromosomal positions of these BACs and their markers on the linkage group. These discrepancies were most notable in the pericentromere heterochromatin, thus confirming previously described suppression of cross-over recombination in that region. In a so called pooled-BAC FISH, we hybridized all seed BACs simultaneously and found a few large gaps in the euchromatin parts of the long arm that are still devoid of seed BACs and are too large for coverage by expanding BAC contigs. Combining FISH with pooled BACs and newly recruited seed BACs will thus aid in efficient targeting of novel seed BACs into these areas. Finally, we established the occurrence of repetitive DNA in heterochromatin/euchromatin borders by combining BAC FISH with hybridization of a labelled repetitive DNA fraction (Cot-100). This strategy provides an excellent means to establish the borders between euchromatin and heterochromatin in this chromosome.


Chromosome Research | 2008

FISH mapping and molecular organization of the major repetitive sequences of tomato

Song Bin Chang; Tae Jin Yang; Erwin Datema; Joke J.F.A. van Vugt; Ben Vosman; Anja G. J. Kuipers; Marie Meznikova; Dóra Szinay; René Klein Lankhorst; E. Jacobsen; Hans de Jong

This paper presents a bird’s-eye view of the major repeats and chromatin types of tomato. Using fluorescence in-situ hybridization (FISH) with Cot-1, Cot-10 and Cot-100 DNA as probes we mapped repetitive sequences of different complexity on pachytene complements. Cot-100 was found to cover all heterochromatin regions, and could be used to identify repeat-rich clones in BAC filter hybridization. Next we established the chromosomal locations of the tandem and dispersed repeats with respect to euchromatin, nucleolar organizer regions (NORs), heterochromatin, and centromeres. The tomato genomic repeats TGRII and TGRIII appeared to be major components of the pericentromeres, whereas the newly discovered TGRIV repeat was found mainly in the structural centromeres. The highly methylated NOR of chromosome 2 is rich in [GACA]4, a microsatellite that also forms part of the pericentromeres, together with [GA]8, [GATA]4 and Ty1-copia. Based on the morphology of pachytene chromosomes and the distribution of repeats studied so far, we now propose six different chromatin classes for tomato: (1) euchromatin, (2) chromomeres, (3) distal heterochromatin and interstitial heterochromatic knobs, (4) pericentromere heterochromatin, (5) functional centromere heterochromatin and (6) nucleolar organizer region.


Theoretical and Applied Genetics | 2004

Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping

Muhammad A. Budiman; Song Bin Chang; So Jeong Lee; Tae Jin Yang; H.-B. Zhang; H. De Jong; Rod A. Wing

Abscission is a universal process whereby plants shed their organs, such as flowers, fruit and leaves. In tomato, the non-allelic mutations jointless and jointless-2 have been discovered as recessive mutations that completely suppress the formation of pedicel abscission zones. A high resolution genetic map of jointless-2 was constructed using 1,122 jointless F2 plants. Restriction fragment length polymorphism (RFLP) marker RPD140 completely co-segregated with the jointless-2 locus and mapped in a 2.4xa0cM interval between RFLP markers CD22 and TG618. To chromosome walk to jointless-2, all three markers were used to screen a bacterial artificial chromosome (BAC) library and contigs were developed. Intensive efforts to expand and merge the BAC contigs were unsuccessful because of the highly repetitive sequence content on the distal ends of each contig. To determine the physical distance between and the orientation of the three contigs, we used high resolution pachytene fluorescence in situ hybridization (FISH) mapping. The RPD140 contig was positioned in the centromeric region of chromosome 12 between two large pericentric heterochromatin blocks, about 50xa0Mb from the TG618 contig on the short arm and 10xa0Mb from the CD22 contig on the long arm, respectively. Based on high resolution genetic and physical mapping, we conclude that the jointless-2 gene is located within or near the chromosome 12 centromere where 1xa0cM is approximately 25xa0Mb in length.


Chromosoma | 2005

In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons

Tae Jin Yang; Seunghee Lee; Song Bin Chang; Yeisoo Yu; Hans de Jong; Rod A. Wing

We sequenced a continuous 326-kb DNA stretch of a microscopically defined centromeric region of tomato chromosome 12. A total of 84% of the sequence (270xa0kb) was composed of a nested complex of repeat sequences including 27 retrotransposons, two transposable elements, three MITEs, two terminal repeat retrotransposons in miniature (TRIMs), ten unclassified repeats and three chloroplast DNA insertions. The retrotransposons were grouped into three families of Ty3-Gypsy type long terminal repeat (LTR) retrotransposons (PCRT1–PCRT3) and one LINE-like retrotransposon (PCRT4). High-resolution fluorescence in situ hybridization analyses on pachytene complements revealed that PCRT1a occurs on the pericentromere heterochromatin blocks. PCRT1 was the prevalent retrotransposon family occupying more than 60% of the 326-kb sequence with 19 members grouped into eight subfamilies (PCRT1a–PCRT1h) based on LTR sequence. The PCRT1a subfamily is a rapidly amplified element occupying tens of megabases. The other PCRT1 subfamilies (PCRT1b–PCRT1h) were highly degenerated and interrupted by insertions of other elements. The PCRT1 family shows identity with a previously identified tomato-specific repeat TGR2 and a CENP-B like sequence. A second previously described genomic repeat, TGR3, was identified as a part of the LTR sequence of an Athila-like PCRT2 element of which four copies were found in the 326-kb stretch. A large block of trinucleotide microsatellite (CAA)n occupies the centromere and large portions of the flanking pericentromere heterochromatin blocks of chromosome 12 and most of the other chromosomes. Five putative genes in the remaining 14% of the centromere region were identified, of which one is similar to a transcription regulator (ToCPL1) and a candidate jointless-2 gene.


Genetics | 2007

Predicting and testing physical locations of genetically mapped loci on tomato pachytene chromosome 1

Song Bin Chang; Lorinda K. Anderson; J. D. Sherman; Suzanne M. Royer; Stephen M. Stack

Predicting the chromosomal location of mapped markers has been difficult because linkage maps do not reveal differences in crossover frequencies along the physical structure of chromosomes. Here we combine a physical crossover map based on the distribution of recombination nodules (RNs) on Solanum lycopersicum (tomato) synaptonemal complex 1 with a molecular genetic linkage map from the interspecific hybrid S. lycopersicum × S. pennellii to predict the physical locations of 17 mapped loci on tomato pachytene chromosome 1. Except for one marker located in heterochromatin, the predicted locations agree well with the observed locations determined by fluorescence in situ hybridization. One advantage of this approach is that once the RN distribution has been determined, the chromosomal location of any mapped locus (current or future) can be predicted with a high level of confidence.


Scientific Reports | 2016

The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution

Guo-Qiang Zhang; Qing Xu; Chao Bian; Wen Chieh Tsai; Chuan Ming Yeh; Ke-Wei Liu; Kouki Yoshida; Liangsheng Zhang; Song Bin Chang; Fei Chen; Yu Shi; Yong Yu Su; Yong Qiang Zhang; Li Jun Chen; Yayi Yin; Min Lin; Huixia Huang; Hua Deng; Zhi Wen Wang; Shi Lin Zhu; Xiang Zhao; Cao Deng; Shan Ce Niu; Jie Huang; Meina Wang; Guo Hui Liu; Hai-Jun Yang; Xin Ju Xiao; Yu Yun Hsiao; Wan Lin Wu

Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC*, involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.


Cytogenetic and Genome Research | 2005

Production of alien chromosome additions and their utility in plant genetics

Song Bin Chang; J.H.S.G.M. de Jong

Breeding programs aiming at transferring desirable genes from one species to another through interspecific hybridization and backcrossings often produce monosomic and disomic additions as intermediate crossing products. Such aneuploids contain alien chromosomes added to the complements of the recipient parent and can be used for further introgression programs, but lack of homoeologous recombination and inevitable segregation of the alien chromosome at meiosis make them often less ideal for producing stable introgression lines. Monosomic and disomic additions can have specific morphological characteristics, but more often they need additional confirmation of molecular marker analyses and assessment by fluorescence in situ hybridization with genomic and chromosome-specific DNA as probes. Their specific genetic and cytogenetic properties make them powerful tools for fundamental research elucidating regulation of homoeologous recombination, distribution of chromosome-specific markers and repetitive DNA sequences, and regulation of heterologous gene expression. In this overview we present the major characteristics of such interspecific aneuploids highlighting their advantages and drawbacks for breeding and fundamental research.


Cytogenetic and Genome Research | 2009

Role of Fluorescence in situ Hybridization in Sequencing the Tomato Genome

Stephen M. Stack; Suzanne M. Royer; Lindsay A. Shearer; Song Bin Chang; James J. Giovannoni; D.H. Westfall; Ruth White; Lorinda K. Anderson

The tomato (Solanum lycopersicum L.) genome is being sequenced by a consortium of laboratories in 10 countries. Seventy-seven percent of the tomato genome (DNA) is located in repeat-rich, gene-poor, pericentric heterochromatin, while 23% of the genome is located in repeat-poor, gene-rich, distal euchromatin. It is estimated that approximately 90% of tomato’s nuclear genes can be characterized by limiting the sequencing effort to euchromatin while avoiding the problems involved in sequencing the repetitive DNA in heterochromatin. Sequencing is being performed on tomato nuclear DNA cloned into bacterial artificial chromosome (BAC) vectors. Fluorescence in situ hybridization (FISH) is used to help direct the sequencing effort by cytologically demonstrating the location of selected BACs on tomato chromosomes. While mitotic metaphase chromosomes are too short and compact for this purpose, long pachytene chromosomes are ideal. BACs localized in euchromatin can be used confidently as anchors for the assembly of BAC contigs that extend through the euchromatic length of each chromosome arm. Another important role for FISH is identification of BACs near telomeres and near borders with pericentric heterochromatin to indicate that sequencing should not extend much further. This role of FISH is enhanced by our ability to estimate base pair distances between localized BACs and these chromosomal features. Finally, it is noteworthy that when BAC-FISH is combined with chromosomal in situ suppression (CISS) hybridization to block repeats and localize single/low copy sequences, the great majority of BACs localize to single sites. This observation is consistent with tomato being an ancient diploid.


Nature | 2017

The Apostasia genome and the evolution of orchids

Guo-Qiang Zhang; Ke-Wei Liu; Zhen Li; Rolf Lohaus; Yu Yun Hsiao; Shan Ce Niu; Jie Yu Wang; Yao-Cheng Lin; Qing Xu; Li Jun Chen; Kouki Yoshida; Sumire Fujiwara; Zhi Wen Wang; Yong Qiang Zhang; Nobutaka Mitsuda; Meina Wang; Guo Hui Liu; Lorenzo Pecoraro; Hui Xia Huang; Xin Ju Xiao; Min Lin; Xin Yi Wu; Wan Lin Wu; You Yi Chen; Song Bin Chang; Shingo Sakamoto; Masaru Ohme-Takagi; Masafumi Yagi; Si Jin Zeng; Ching Yu Shen

Constituting approximately 10% of flowering plant species, orchids (Orchidaceae) display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth. Here we report the draft genome sequence of Apostasia shenzhenica, a representative of one of two genera that form a sister lineage to the rest of the Orchidaceae, providing a reference for inferring the genome content and structure of the most recent common ancestor of all extant orchids and improving our understanding of their origins and evolution. In addition, we present transcriptome data for representatives of Vanilloideae, Cypripedioideae and Orchidoideae, and novel third-generation genome data for two species of Epidendroideae, covering all five orchid subfamilies. A. shenzhenica shows clear evidence of a whole-genome duplication, which is shared by all orchids and occurred shortly before their divergence. Comparisons between A. shenzhenica and other orchids and angiosperms also permitted the reconstruction of an ancestral orchid gene toolkit. We identify new gene families, gene family expansions and contractions, and changes within MADS-box gene classes, which control a diverse suite of developmental processes, during orchid evolution. This study sheds new light on the genetic mechanisms underpinning key orchid innovations, including the development of the labellum and gynostemium, pollinia, and seeds without endosperm, as well as the evolution of epiphytism; reveals relationships between the Orchidaceae subfamilies; and helps clarify the evolutionary history of orchids within the angiosperms.


International Journal of Molecular Sciences | 2011

Development of simple sequence repeats (SSR) markers in Setaria Italica (poaceae) and cross-amplification in related species

Heng Sheng Lin; Chih Yun Chiang; Song Bin Chang; Chang-Sheng Kuoh

Foxtail millet is one of the world’s oldest cultivated crops. It has been adopted as a model organism for providing a deeper understanding of plant biology. In this study, 45 simple sequence repeats (SSR) markers of Setaria italica were developed. These markers showing polymorphism were screened in 223 samples from 12 foxtail millet populations around Taiwan. The most common dinucleotide and trinucleotide repeat motifs are AC/TG (84.21%) and CAT (46.15%). The average number of alleles (Na), the average heterozygosities observed (Ho) and expected (He) are 3.73, 0.714, 0.587, respectively. In addition, 24 SSR markers had shown transferability to six related Poaceae species. These new markers provide tools for examining genetic relatedness among foxtail millet populations and other related species. It is suitable for germplasm management and protection in Poaceae.

Collaboration


Dive into the Song Bin Chang's collaboration.

Top Co-Authors

Avatar

Hans de Jong

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Tae Jin Yang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hungjiun Liaw

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Jan Jong Hung

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Sen Huei Hsu

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Wen Pin Su

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang-Sheng Kuoh

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Cheng Kuei Wu

National Cheng Kung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge