Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Song F. Lee is active.

Publication


Featured researches published by Song F. Lee.


Vaccine | 2009

A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity.

Jason Kindrachuk; Håvard Jenssen; Melissa Elliott; Rebecca Townsend; Anastasia Nijnik; Song F. Lee; Volker Gerdts; Lorne A. Babiuk; Scott A. Halperin; Robert E. W. Hancock

There has been an increased demand for the development of novel vaccine adjuvants that lead to enhanced induction of protection from infectious challenges and development of immunological memory. A novel vaccine adjuvant was developed comprising a complex containing CpG oligonucleotide and the synthetic cationic innate defence regulator peptide HH2 that has enhanced immune modulating activities. The complex of HH2 and the CpG oligonucleotide 10101 was a potent inducer of cytokine/chemokine expression ex vivo, retained activity following extended storage, had low associated cytotoxicity, and upregulated surface marker expression in dendritic cells, a critical activity for a vaccine adjuvant. Immunization of mice with a coformulation of the HH2-CpG complex and pertussis toxoid significantly enhanced the induction of toxoid-specific antibody titres when compared to toxoid alone, inducing high titres of IgG1 and IgG2a, typical of a balanced Th1/Th2 response, and also led to high IgA titres. This study demonstrates the potential application of the HH2-CpG complex as a vaccine adjuvant.


Infection and Immunity | 2007

Role of D-alanylation of Streptococcus gordonii lipoteichoic acid in innate and adaptive immunity

Karenn G. Chan; Matt Mayer; Elisabeth M. Davis; Scott A. Halperin; Tong-Jun Lin; Song F. Lee

ABSTRACT In recent years, there has been considerable interest in using the oral commensal gram-positive bacterium Streptococcus gordonii as a live vaccine vector. The present study investigated the role of d-alanylation of lipoteichoic acid (LTA) in the interaction of S. gordonii with the host innate and adaptive immune responses. A mutant strain defective in d-alanylation was generated by inactivation of the dltA gene in a recombinant strain of S. gordonii (PM14) expressing a fragment of the S1 subunit of pertussis toxin. The mutant strain was found to be more susceptible to killing by polymyxin B, nisin, magainin II, and human β defensins than the parent strain. When it was examined for binding to murine bone marrow-derived dendritic cells (DCs), the dltA mutant exhibited 200- to 400-fold less binding than the parent but similar levels of binding were shown for Toll-like receptor 2 (TLR2) knockout DCs and HEp-2 cells. In a mouse oral colonization study, the mutant showed a colonization ability similar to that of the parent and was not able to induce a significant immune response. The mutant induced significantly less interleukin 12p70 (IL-12p70) and IL-10 than the parent from DCs. LTA purified from the bacteria induced tumor necrosis factor-alpha and IL-6 production from wild-type DCs but not from TLR2 knockout DCs, and the mutant LTA induced a significantly smaller amount of these two cytokines. These results show that d-alanylation of LTA in S. gordonii plays a role in the interaction with the host immune system by contributing to the relative resistance to host defense peptides and by modulating cytokine production by DCs.


Microbiology | 2009

Expression of the Streptococcus mutans essential two-component regulatory system VicRK is pH and growth-phase dependent and controlled by the LiaFSR three-component regulatory system

Yannick D. N. Tremblay; Henry Lo; Yung-Hua Li; Scott A. Halperin; Song F. Lee

As an inhabitant of the human oral cavity, Streptococcus mutans faces frequent environmental changes. Two-component regulatory systems (TCSs) play a critical role in responding to these changes. Recently, an essential TCS, VicRKX, has been identified. The objective of this study was to identify the environmental signal and bacterial factors regulating the expression of the vicRKX operon. The promoter of the vicRKX operon was fused to a promoterless lacZ reporter gene and introduced into S. mutans UA159. LacZ plate assay identified pH, vancomycin, ampicillin, penicillin G and polymyxin B, but not carbohydrates, as factors affecting expression. Using RNA dot-blotting, high levels of vicR transcript were observed in cells at the mid- and late-exponential phase of growth and in cells grown in media buffered at pH 7.8. Given that vicR expression was pH-dependent, the genes encoding a putative pH-sensing three-component regulatory system (LiaFSR) were deleted. The liaS mutant exhibited upregulation of vicR regardless of the growth condition. The role of VicK, VicX, and the competence-signal peptide (CSP) was also investigated; the results showed that vicR expression was not autoregulated and was downregulated by the CSP in a ComX-independent manner. In conclusion, the expression of vicRKX is influenced by culture pH, growth phase and antibiotic stress, and is regulated by LiaFRS.


Infection and Immunity | 2003

Mucosal immunization with a genetically engineered pertussis toxin S1 fragment-cholera toxin subunit B chimeric protein.

Song F. Lee; Scott A. Halperin; Danny F. Salloum; Ann MacMillan; Annette Morris

ABSTRACT A chimeric protein consisting of a divalent pertussis toxin (PT) S1 fragment linked to the cholera toxin (Ctx) A2B fragment was constructed. The chimera induced a mucosal immunoglobulin A (IgA) and a serum IgG immune response to PT and CtxB in BALB/c mice following intranasal immunization. The immune sera neutralized PT in vitro. In the mouse model of Bordetella pertussis respiratory infection, the chimera-immunized animals showed a significant reduction in bacterial lung counts (P = 0.01) from that of the sham control group. Thus, a divalent S1 fragment CtxA2B chimera is an immunogenic antigen and can elicit a protective immunity.


Applied and Environmental Microbiology | 2002

Purification and Immunogenicity of a Recombinant Bordetella pertussis S1S3FHA Fusion Protein Expressed by Streptococcus gordonii

Song F. Lee; Scott A. Halperin; Jennifer B. Knight; Aaron Tait

ABSTRACT Acellular pertussis vaccines typically consist of antigens isolated from Bordetella pertussis, and pertussis toxin (PT) and filamentous hemagglutinin (FHA) are two prominent components. One of the disadvantages of a multiple-component vaccine is the cost associated with the production of the individual components. In this study, we constructed an in-frame fusion protein consisting of PT fragments (179 amino acids of PT subunit S1 and 180 amino acids of PT subunit S3) and a 456-amino-acid type I domain of FHA. The fusion protein was expressed by the commensal oral bacterium Streptococcus gordonii. The fusion protein was secreted into the culture medium as an expected 155-kDa protein, which was recognized by a polyclonal anti-PT antibody, a monoclonal anti-S1 antibody, and a monoclonal anti-FHA antibody. The fusion protein was purified from the culture supernatant by affinity and gel permeation chromatography. The immunogenicity of the purified fusion protein was assessed in BALB/c mice by performing parenteral and mucosal immunization experiments. When given parenterally, the fusion protein elicited a very strong antibody titer against the FHA type I domain, a moderate titer against native FHA, and a weak titer against PT. When given mucosally, it elicited a systemic response and a mucosal response to FHA and PT. In Western blots, the immune sera recognized the S1, S3, and S2 subunits of PT. These data collectively indicate that fragments of the pertussis vaccine components can be expressed in a single fusion protein by S. gordonii and that the fusion protein is immunogenic. This multivalent fusion protein approach may be used in designing a new generation of acellular pertussis vaccines.


Applied and Environmental Microbiology | 2004

Expression and immunogenicity of a recombinant diphtheria toxin fragment A in Streptococcus gordonii.

Chiang W. Lee; Song F. Lee; Scott A. Halperin

ABSTRACT A nontoxic mutant diphtheria toxin fragment A (DTA) was genetically fused in single, double, or triple copy to the major surface protein antigen P1 (SpaP) and surface expressed in Streptococcus gordonii DL-1. The expression was verified by Western immunoblotting. Mouse antisera raised against the recombinant S. gordonii recognized the native diphtheria toxinm suggesting the recombinant DTA was immunogenic. When given intranasally to mice with cholera toxin subunit B as the adjuvant, the recombinant S. gordonii expressing double copies of DTA (SpaP-DTA2) induced a mucosal immunoglobulin A response and a weak systemic immunoglobulin G response. S. gordonii SpaP-DTA2 was able to orally colonize BALB/c mice for a 15-week period and elicited a mucosal response, but a serum immunoglobulin G response was not apparent. The antisera failed to neutralize diphtheria toxin cytotoxicity in a Vero cell assay.


Journal of Biological Chemistry | 2013

Functional Analysis of Paralogous Thiol-disulfide Oxidoreductases in Streptococcus gordonii

Lauren Davey; Crystal K. W. Ng; Scott A. Halperin; Song F. Lee

Background: Thiol-disulfide oxidoreductases catalyze disulfide bond formation in extracellular proteins. Results: A new oxidoreductase, SdbA, affects multiple phenotypes in Streptococcus gordonii and is required for production of disulfide-bonded proteins. Conclusion: SdbA is a new type of oxidoreductase that has important biological functions. Significance: This is the first indication that thiol-disulfide oxidoreductases are important to the physiology of Firmicute bacteria. Disulfide bonds are important for the stability of many extracellular proteins, including bacterial virulence factors. Formation of these bonds is catalyzed by thiol-disulfide oxidoreductases (TDORs). Little is known about their formation in Gram-positive bacteria, particularly among facultative anaerobic Firmicutes, such as streptococci. To investigate disulfide bond formation in Streptococcus gordonii, we identified five putative TDORs from the sequenced genome. Each of the putative TDOR genes was insertionally inactivated with an erythromycin resistance cassette, and the mutants were analyzed for autolysis, extracellular DNA release, biofilm formation, bacteriocin production, and genetic competence. This analysis revealed a single TDOR, SdbA, which exhibited a pleiotropic mutant phenotype. Using an in silico analysis approach, we identified the major autolysin AtlS as a natural substrate of SdbA and showed that SdbA is critical to the formation of a disulfide bond that is required for autolytic activity. Analysis by BLAST search revealed homologs to SdbA in other Gram-positive species. This study provides the first in vivo evidence of an oxidoreductase, SdbA, that affects multiple phenotypes in a Gram-positive bacterium. SdbA shows low sequence homology to previously identified oxidoreductases, suggesting that it may belong to a different class of enzymes. Our results demonstrate that SdbA is required for disulfide bond formation in S. gordonii and indicate that this enzyme may represent a novel type of oxidoreductase in Gram-positive bacteria.


Molecular Immunology | 2009

Synergistic BM-DC activation and immune induction by the oral vaccine vector Streptococcus gordonii and exogenous tumor necrosis factor

Matthew L. Mayer; Carrie M. Phillips; Andrew W. Stadnyk; Scott A. Halperin; Song F. Lee

Streptococcus gordonii, a potential mucosal vaccine delivery vector, is proficient at colonizing murine oral mucosa; however, it often fails to elicit significant antibody titers against its vaccine antigen payloads. The poor response may be due to an inability of S. gordonii to elicit cytokines needed to suppress mucosal tolerance; exogenously supplied cytokines, such as TNF, could overcome this effect. To test this, murine bone marrow-derived dendritic cells (BM-DCs) were stimulated with UV-killed S. gordonii PM14, that surface expresses a fragment of the immunodominant S1 subunit of pertussis toxin. Peptidoglycan (PGN), lipoteichoic acid (LTA), lipoprotein (LP), and DNA were also isolated from the bacteria, and used to stimulate BM-DCs. Stimulation with TNF, S. gordonii, PGN, LTA, or LP all resulted in increased surface expression of MHCII, CD80, and CD86, compared to unstimulated BM-DCs. Stimulation with S. gordonii elicited IL-6, IL-10, and IL-12p70 production from the BM-DCs, while stimulation with the bacterial components induced some or all of the three cytokines. When BM-DCs were simultaneously stimulated with S. gordonii and TNF, a marginal increase in surface marker upregulation was observed, and the two stimuli synergized to elicit substantially greater quantities of IL-6, IL-10, and IL-12p70. Synergy between TNF and the purified bacterial components was also observed. The effect of TNF was abolished when BM-DCs were obtained from mice deficient for either TNFR1 or TNFR2, and cytokine induction by S. gordonii was entirely dependent on functional MyD88. Synergistic IL-10 induction by S. gordonii and TNF was not observed in TLR-2(-/-) BM-DCs, and TNF was found to cause TLR-2 upregulation, providing at least a partial mechanism for the observed synergy. When S. gordonii and TNF were used to immunize mice, a more robust anti-S. gordonii IgG response was elicited as compared to immunization with S. gordonii alone. However, the addition of TNF did not result in stronger responses against the antigenic insert (S1 fragment) in immunized mice. These findings collectively demonstrate that TNF is able to prime BM-DCs to better respond to S. gordonii, through a mechanism at least partially involving TLR-2 upregulation.


Microbiology | 2009

Overcoming codon-usage bias in heterologous protein expression in Streptococcus gordonii

Song F. Lee; Yi-Jing Li; Scott A. Halperin

One of the limitations facing the development of Streptococcus gordonii into a successful vaccine vector is the inability of this bacterium to express high levels of heterologous proteins. In the present study, we have identified 12 codons deemed as rare codons in S. gordonii and seven other streptococcal species. tRNA genes encoding 10 of the 12 rare codons were cloned into a plasmid. The plasmid was transformed into strains of S. gordonii expressing the fusion protein SpaP/S1, the anti-complement receptor 1 (CR1) single-chain variable fragment (scFv) antibody, or the Toxoplasma gondii cyclophilin C18 protein. These three heterologous proteins contained high percentages of amino acids encoded by rare codons. The results showed that the production of SpaP/S1, anti-CR1 scFv and C18 increased by 2.7-, 120- and 10-fold, respectively, over the control strains. In contrast, the production of the streptococcal SpaP protein without the pertussis toxin S1 fragment was not affected by tRNA gene supplementation, indicating that the increased production of SpaP/S1 protein was due to the ability to overcome the limitation caused by rare codons required for the S1 fragment. The increase in anti-CR1 scFv production was also observed in Streptococcus mutans following tRNA gene supplementation. Collectively, the findings in the present study demonstrate for the first time, to the best of our knowledge, that codon-usage bias exists in Streptococcus spp. and the limitation of heterologous protein expression caused by codon-usage bias can be overcome by tRNA supplementation.


Microbiology | 2011

Regulation of D-alanylation of lipoteichoic acid in Streptococcus gordonii

Nicole E. McCormick; Scott A. Halperin; Song F. Lee

d-Alanyl esters on lipoteichoic acid (LTA) are involved in adhesion, biofilm formation, resistance to cationic antimicrobial peptides, and immune stimulation. There is evidence that bacteria can modulate the level of d-alanyl esters on LTA in response to challenge, but the mechanism of regulation appears to be different among bacteria. In this study, expression of the dlt operon responsible for d-alanylation of LTA was examined in the commensal bacterium Streptococcus gordonii. dlt expression was assessed using the dlt promoter-lacZ reporter gene assay, LTA d-alanine content measurements and dlt mRNA quantification. The results showed that dlt expression was growth phase-dependent, with the greatest expression at the mid-exponential phase of growth. In contrast to Staphylococcus aureus, dlt expression in Strep. gordonii was not affected by the exogenous addition of Mg(2+) or K(+). Interestingly, dlt expression was upregulated under acidic conditions or when cells were stressed with polymyxin B, indicating that cell envelope stress may be a signal for dlt expression. In view of these results, mutants defective in the cell envelope stress LiaSR two-component regulatory system were constructed. The liaS and liaR mutants showed an increase in dlt expression over the parent strain at neutral pH. The mutants failed to respond to low pH and polymyxin B stress; dlt expression remained the same in the presence or absence of these stresses. These results suggest that dlt expression in Strep. gordonii is regulated by the LiaSR regulatory system in response to environmental signals such as pH and polymyxin B. The regulation appears to be complex, involving both repression and activation mechanisms.

Collaboration


Dive into the Song F. Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Crystal K. W. Ng

Izaak Walton Killam Health Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge