Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Song-Mei Liu is active.

Publication


Featured researches published by Song-Mei Liu.


Clinical Chemistry | 2013

Quantification of 5-Methylcytosine and 5-Hydroxymethylcytosine in Genomic DNA from Hepatocellular Carcinoma Tissues by Capillary Hydrophilic-Interaction Liquid Chromatography/Quadrupole TOF Mass Spectrometry

Ming-Luan Chen; Fan Shen; Wei Huang; Jiahui Qi; Yinsheng Wang; Yu-Qi Feng; Song-Mei Liu; Bi-Feng Yuan

BACKGROUND 5-Methylcytosine (5-mC) is an important epigenetic modification involved in development and is frequently altered in cancer. 5-mC can be enzymatically converted to 5-hydroxymethylcytosine (5-hmC). 5-hmC modifications are known to be prevalent in DNA of embryonic stem cells and neurons, but the distribution of 5-hmC in human liver tumor and matched control tissues has not been rigorously explored. METHODS We developed an online trapping/capillary hydrophilic-interaction liquid chromatography (cHILIC)/in-source fragmentation/tandem mass spectrometry system for quantifying 5-mC and 5-hmC in genomic DNA from hepatocellular carcinoma (HCC) tumor tissues and relevant tumor adjacent tissues. A polymer-based hydrophilic monolithic column was prepared and used for the separation of 12 nucleosides by cHILIC coupled with an online trapping system. Limits of detection and quantification, recovery, and imprecision of the method were determined. RESULTS Limits of detection for 5-mC and 5-hmC were 0.06 and 0.19 fmol, respectively. The imprecision and recovery of the method were determined, with the relative SDs and relative errors being <14.9% and 15.8%, respectively. HCC tumor tissues had a 4- to 5-fold lower 5-hmC content compared to tumor-adjacent tissues. In addition, 5-hmC content highly correlated with tumor stage (tumor-nodes-metastasis, P = 0.0002; Barcelona Clinic liver cancer, P = 0.0003). CONCLUSIONS The marked depletion of 5-hmC may have profound effects on epigenetic regulation in HCC and could be a potential biomarker for the early detection and prognosis of HCC.


Molecules | 2014

Tumor-Associated Circulating MicroRNAs as Biomarkers of Cancer

Jin Wang; Ke-Yong Zhang; Song-Mei Liu; Subrata Sen

MicroRNAs (miRNAs), the 17- to 25-nucleotide long noncoding RNAs that modulate the expression of mRNAs and proteins, have emerged as critical players in cancer initiation and progression processes. Deregulation of tissue miRNA expression levels associated with specific genetic alterations has been demonstrated in cancer, where miRNAs function either as oncogenes or as tumor-suppressor genes and are shed from cancer cells into circulation. The present review summarizes and evaluates recent advances in our understanding of the characteristics of tumor tissue miRNAs, circulating miRNAs, and the stability of miRNAs in tissues and their varying expression profiles in circulating tumor cells, and body fluids including blood plasma. These advances in knowledge have led to intense efforts towards discovery and validation of differentially expressing tumor-associated miRNAs as biomarkers and therapeutic targets of cancer. The development of tumor-specific miRNA signatures as cancer biomarkers detectable in malignant cells and body fluids should help with early detection and more effective therapeutic intervention for individual patients.


Chemistry: A European Journal | 2013

Sensitive and Convenient Detection of microRNAs Based on Cascade Amplification by Catalytic DNAzymes

Tian Tian; Heng Xiao; Zhengan Zhang; Yuelin Long; Shuang Peng; Shaoru Wang; Xiang Zhou; Song-Mei Liu; Xin Zhou

On target: We have developed two cascade amplification strategies that combine duplex specific nuclease (DSN) amplicon with either G-quadruplex-based DNA peroxidase or 8-17 DNAzyme amplicon for miRNA detection. In this way, sensitive and convenient detection of miRNAs was achieved. In the DNA peroxidase-based system, a visual color change could be observed in the presence of target miRNAs (see scheme).


Frontiers in Oncology | 2014

MicroRNA Machinery Genes as Novel Biomarkers for Cancer.

Jing Tao Huang; Jin Wang; Vibhuti Srivastava; Subrata Sen; Song-Mei Liu

MicroRNAs (miRNAs) directly and indirectly affect tumorigenesis. To be able to perform their myriad roles, miRNA machinery genes, such as Drosha, DGCR8, Dicer1, XPO5, TRBP, and AGO2, must generate precise miRNAs. These genes have specific expression patterns, protein-binding partners, and biochemical capabilities in different cancers. Our preliminary analysis of data from The Cancer Genome Atlas consortium on multiple types of cancer revealed significant alterations in these miRNA machinery genes. Here, we review their biological structures and functions with an eye toward understanding how they could serve as cancer biomarkers.


The Journal of Clinical Endocrinology and Metabolism | 2015

Decreased N6-Methyladenosine in Peripheral Blood RNA From Diabetic Patients Is Associated With FTO Expression Rather Than ALKBH5

Fan Shen; Wei Huang; Jing Tao Huang; Jun Xiong; Ying Yang; Ke Wu; Gui Fang Jia; Jinyun Chen; Yu-Qi Feng; Bi-Feng Yuan; Song-Mei Liu

CONTEXT N(6)-methyladenosine (m(6)A) modification plays a fundamental role in the epigenetic regulation of the mammalian transcriptome. m(6)A can be demethylated by fat mass- and obesity-associated (FTO) protein and α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) protein. However, the importance of m(6)A alteration in type 2 diabetes mellitus (T2DM) has not been explored. OBJECTIVE The objective of the study was to investigate whether m(6)A content was reduced in T2DM patients and whether m(6)A content was correlated with the mRNA expression levels of the FTO and ALKBH5 genes. METHODS In this case-control study, peripheral blood samples were obtained from 88 T2DM patients and 92 healthy controls. For the diabetic animal model experiment, blood samples were obtained from seven diabetic and eight nondiabetic rats. A sensitive liquid chromatography-electrospray ionization-tandem mass spectrometry method was developed for the determination of the m(6)A content in RNA, quantitative real-time PCR was used to examine the mRNA expression levels of the FTO and ALKBH5 genes, and high-resolution melting and DNA sequencing were used to detect FTO single-nucleotide polymorphisms. RESULTS Our results showed that the m(6)A contents in the RNA from T2DM patients and diabetic rats were significantly lower compared with the control groups (P = 2.6 × 10(-24) for T2DM patients; P = .001 for diabetic rats, respectively), and T2DM can be characterized by the content of m(6)A. The mRNA expression level of FTO was significantly higher in T2DM patients than that of the controls (P = .0007) and was associated with the risk of T2DM (odds ratio 2.797, 95% confidence interval 1.452-5.389, P = .002). Moreover, the m(6)A contents were correlated with FTO mRNA expression. CONCLUSIONS These data suggest that the increased mRNA expression of FTO could be responsible for the reduction of m(6)A in T2DM, which may further increase the risk of complications of T2DM. Low m(6)A should be investigated further as a novel potential biomarker of T2DM.


Journal of Cellular Physiology | 2016

Systematic Review and Meta-Analysis: Circulating miRNAs for Diagnosis of Hepatocellular Carcinoma.

Jing-Tao Huang; Song-Mei Liu; Haiqing Ma; Ying Yang; Xuan Zhang; Huanhuan Sun; Xiaoyan Zhang; Jianqing Xu; Jin Wang

Because early‐stage hepatocellular carcinoma (HCC) is difficult to diagnose using the existing techniques, identifying better biomarkers would likely improve the patients’ prognoses. We performed a systematic review and meta‐analysis of published studies to appraise the utility of microRNAs (miRNAs) for the early diagnosis of HCC. Pertinent literature was collected from the Medline, Embase, and Chinese National Knowledge Infrastructure databases. We analyzed 50 studies that included 3423 cases of HCC, 2403 chronic hepatic disease (CH) patients, and 1887 healthy controls in 16 articles. Summary receiver operating characteristic analyses of all miRNAs showed an area under the curve (AUC) of 0.82, with 75.8% sensitivity and 75.0% specificity in discriminating patients with HCC from healthy controls. miR‐21 and miR‐122 individually distinguished patients with HCC from healthy controls, with an AUC of 0.88 for miR‐21 and 0.77 for miR‐122. The sensitivity and specificity for miR‐21 were 86.6% and 79.5%, respectively, those for miR‐122 were 68.0% and 73.3%. We conclude that circulating miRNAs, particularly miR‐21, and miR‐122, are promising biomarkers for the early diagnosis of HCC. J. Cell. Physiol. 231: 328–335, 2016.


PLOS ONE | 2013

FADS Gene Polymorphisms Confer the Risk of Coronary Artery Disease in a Chinese Han Population through the Altered Desaturase Activities: Based on High-Resolution Melting Analysis

Si-Wei Li; Kun Lin; Pei Ma; Zhen-Lu Zhang; Yidan Zhou; Shuangyan Lu; Xin Zhou; Song-Mei Liu

Objective We explored the desaturase activities and the correlation of fatty acid desaturases (FADS) gene single nucleotide polymorphisms (SNPs) with plasma fatty acid in coronary artery disease (CAD) patients in a Chinese Han population. Methods Plasma fatty acids were measured by gas chromatography in CAD patients (n = 505) and a control group (n = 510). Five SNPs in the FADS gene were genotyped with high-resolution melting (HRM) methods. Results After adjustment, D6D activity, assessed as arachidonic acid (AA, C20:4n-6)/linoleic acid (LA, C18:2n-6), was higher in CAD patients (p<0.001). D9D activity, which was estimated as the ratio of palmitoleic acid (C16:1)/palmitic acid (C16:0) or oleic acid (C18:1n-9) to stearic acid (C18:0), was also increased (p<0.001). The genotype distributions of rs174537 G>T and rs174460 C>T were different between the two groups. The rs174537 T allele was associated with a lower risk of CAD [OR 0.743, 95% CI (0.624, 0.884), p = 0.001]. Carriers of the rs174460 C allele were associated with a higher risk of CAD [OR 1.357, 95% CI (1.106, 1.665), p = 0.003]. Conclusions We firstly report that the rs174460 C allele is associated with a higher risk of CAD, and confirm that the rs174537 T allele is associated with a lower risk of CAD. Our results indicate that FADS gene polymorphisms are likely to influence plasma fatty acid concentrations and desaturase activities.


Chemical Communications | 2013

Highly sensitive detection of telomerase based on a DNAzyme strategy.

Tian Tian; Shuang Peng; Heng Xiao; Xiaoe Zhang; Shan Guo; Shaoru Wang; Xiang Zhou; Song-Mei Liu; Xin Zhou

The present study demonstrated a highly sensitive strategy for measuring telomerase activity in cell extracts. Furthermore, we applied the new strategy for in situ detection of telomerase at the cellular level in cancer cells, together with a normal cell as the negative control.


Clinical Chemistry | 2015

Next Generation Digital PCR Measurement of Hepatitis B Virus Copy Number in Formalin-Fixed Paraffin-Embedded Hepatocellular Carcinoma Tissue

Jing-Tao Huang; Ying-Juan Liu; Jin Wang; Zhi-Gao Xu; Ying Yang; Fan Shen; Xing-hui Liu; Xin Zhou; Song-Mei Liu

BACKGROUND Hepatocellular carcinoma (HCC) is strongly associated with hepatitis B virus (HBV) infection. False-negative results are common in routine serological tests and quantitative real-time PCR because of HBV surface antigen (HBsAg) variation and low HBV copy number. Droplet digital PCR (ddPCR), a next generation digital PCR, is a novel, sensitive, and specific platform that can be used to improve HBV detection. METHODS A total of 131 HCC cases with different tumor stages and clinical features were initially classified with a serological test as HBsAg positive (n = 107) or negative (n = 24) for HBV infection. Next, DNA templates were prepared from the corresponding formalin-fixed paraffin-embedded (FFPE) tissues to determine HBV copy number by ddPCR. RESULTS HBV copy numbers, successfully determined for all clinical FFPE tissues (n = 131), ranged from 1.1 to 175.5 copies/μL according to ddPCR. The copy numbers of HBV were positively correlated with tumor-nodes-metastasis (P = 0.008) and Barcelona-Clinic Liver Cancer (P = 0.045) classification. Moreover, serum cholinesterase correlated with hepatitis B viral load (P = 0.006). CONCLUSIONS HBV infection is a key factor that influences tumorigenesis in HCC by regulating tumor occurrence and development. ddPCR improves the analytical sensitivity and specificity of measurements in nucleic acids at a single-molecule level and is suitable for HBV detection.


BMC Cancer | 2014

High-resolution melting analysis reveals genetic polymorphisms in MicroRNAs confer hepatocellular carcinoma risk in Chinese patients

Jia Hui Qi; Jin Wang; Jinyun Chen; Fan Shen; Jing Tao Huang; Subrata Sen; Xin Zhou; Song-Mei Liu

BackgroundAlthough several single-nucleotide polymorphisms in microRNA (miRNA) genes have been associated with primary hepatocellular carcinoma, published findings regarding this relationship are inconsistent and inconclusive.MethodsThe high-resolution melting (HRM) analysis was used to determine whether the occurrence of the SNPs of miR-146a C > G (rs2910164), miR-196a2 C > T (rs11614913), miR-301b A > G (rs384262), and miR-499 C > T (rs3746444) differs in frequency-matched 314 HCC patients and 407 controls by age and sex.ResultsThe groups’ genotype distributions of miR-196a2 C > T and miR-499 C > T differed significantly (P < 0.01), both of them increased the risk of HCC in different dominant genetic models (P < 0.01); compared with individuals carrying one or neither of the unfavorable genotypes, individuals carrying both unfavorable genotypes (CT + CC) had a 3.11-fold higher HCC risk (95% confidence interval (CI), 1.89–5.09; P = 7.18 × 10−6). Moreover, the allele frequency of miR-499 C > T was significantly different between the two groups, and the HCC risk of carriers of the C allele was higher than that of carriers of the T allele (odds ratio, 1.53; 95% CI, 1.15-2.03; P = 0.003). Further, we found that the activated partial thromboplastin time (APTT) in HCC patients with miR-196a2 CC genotype was longer than patients with TT genotypes (P < 0.05), and HCC patients with miR-499 C allele had higher serum levels of direct bilirubin, globulin, γ-glutamyltranspeptidase, alkaline phosphatase, and lower serum cholinesterase (P < 0.05).ConclusionsOur findings suggest that the SNPs in miR-196a2 C > T and miR-499 C > T confer HCC risk and that affect the clinical laboratory characteristics of HCC patients.

Collaboration


Dive into the Song-Mei Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge