Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Songdong Meng is active.

Publication


Featured researches published by Songdong Meng.


Clinical Cancer Research | 2004

Circulating Tumor Cells in Patients with Breast Cancer Dormancy

Songdong Meng; Debasish Tripathy; Eugene P. Frenkel; Sanjay Shete; Elizabeth Naftalis; James F. Huth; Peter D. Beitsch; Marilyn Leitch; Susan Hoover; David M. Euhus; Barbara Haley; Larry E. Morrison; Timothy P. Fleming; Dorothee Herlyn; Leon W.M.M. Terstappen; Tanja Fehm; Thomas F. Tucker; Nancy Lane; Jianqiang Wang; Jonathan W. Uhr

Purpose: The purpose of this study was to test the hypothesis that circulating tumor cells (CTCs) are present in patients many years after mastectomy without evidence of disease and that these CTCs are shed from persisting tumor in patients with breast cancer dormancy. Experimental Design: We searched for CTCs in 36 dormancy candidate patients and 26 age-matched controls using stringent criteria for cytomorphology, immunophenotype, and aneusomy. Results: Thirteen of 36 dormancy candidates, 7 to 22 years after mastectomy and without evidence of clinical disease, had CTCs, usually on more than one occasion. Only 1 of 26 controls had a possible CTC (no aneusomy). The statistical difference of these two distributions was significant (exact P = 0.0043). The CTCs in patients whose primary breast cancer was just removed had a half-life measured in 1 to 2.4 hours. Conclusions: The CTCs that are dying must be replenished every few hours by replicating tumor cells somewhere in the tissues. Hence, there appears to be a balance between tumor replication and cell death for as long as 22 years in dormancy candidates. We conclude that this is one mechanism underlying tumor dormancy.


Hepatology | 2012

Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G1-modulated P53 activity†‡

Saifeng Wang; Lipeng Qiu; Xiaoli Yan; Wensong Jin; Yanzhong Wang; Lizhao Chen; Erjie Wu; Xin Ye; George F. Gao; Fu-Sheng Wang; Yu Chen; Zhongping Duan; Songdong Meng

Hepatitis B virus (HBV) causes chronic infection in about 350 million people worldwide. Given the important role of the most abundant liver‐specific microRNA, miR‐122, in hepatic function and liver pathology, here we investigated the potential role and mechanism of miR‐122 in regulating HBV replication. We found that miR‐122 expression in liver was significantly down‐regulated in patients with HBV infection compared with healthy controls, and the miR‐122 levels were negatively correlated with intrahepatic viral load and hepatic necroinflammation. The depletion of endogenous miR‐122 by its antisense inhibitor led to enhanced HBV replication, whereas overexpression of miR‐122 by transfection of mimic or its expression vector inhibited viral production. We next identified cyclin G1 as an miR‐122 target from multiple candidate target genes that are involved in the regulation of HBV replication. Overexpression and knockdown studies both showed that cyclin G1 regulated viral replication in HBV transfected cells. We also observed that cyclin G1 expression was up‐regulated in HBV‐infected patients, and cyclin G1 levels were inversely associated with miR‐122 expression in liver tissues. Using coimmunoprecipitation, a luciferase reporter system, and electrophoretic mobility shift assay, we further demonstrated that cyclin G1 specifically interacted with p53, and this interaction blocked the specific binding of p53 to HBV enhancer elements and simultaneously abrogated p53‐mediated inhibition of HBV transcription. Finally, we show that miR‐122 suppressed HBV replication in p53 wildtype cells but not in null isogenic cells. Conclusion: miR‐122 down‐regulates its target cyclin G1, and thus interrupts the interaction between cyclin G1 and p53 and abrogates p53‐mediated inhibition of HBV replication. Our work shows that miR‐122 down‐regulation induced by HBV infection can impact HBV replication and possibly contribute to viral persistence and carcinogenesis. (HEPATOLOGY 2012;)


Proceedings of the National Academy of Sciences of the United States of America | 2006

uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues

Songdong Meng; Debu Tripathy; Sanjay Shete; Raheela Ashfaq; Hossein Saboorian; Barbara Haley; Eugene P. Frenkel; David M. Euhus; Marilyn Leitch; Cynthia Osborne; Edward Clifford; Steve Perkins; Peter D. Beitsch; Amanullah Khan; Larry E. Morrison; Dorothee Herlyn; Leon W.M.M. Terstappen; Nancy Lane; Jianqiang Wang; Jonathan W. Uhr

Overexpression of urokinase plasminogen activator system or HER-2 (erbB-2) in breast cancer is associated with a poor prognosis. HER-2 overexpression is caused by HER-2 gene amplification. The anti-HER-2 antibody trastuzumab significantly improves clinical outcome for HER2-positive breast cancer. Drugs that target the uPA system are in early clinical trials. The aims of this study were to determine whether urokinase plasminogen activator receptor (uPAR) gene amplification occurs and whether analysis of individual tumor cells (TCs) in the blood or tissue can add information to conventional pathological analysis that could help in diagnosis and treatment. Analysis of individual TCs indicates that uPAR amplification occurs in a significant portion of primary breast cancers and also circulating tumor cells (CTCs) from patients with advanced disease. There was complete concordance between touch preps (TPs) and conventional pathological examination of HER-2 and uPAR gene status in primary tumors. There was also excellent concordance of HER-2 gene status between primary tumors and CTCs provided that acquisition of HER-2 gene amplification in CTCs was taken into account. Unexpectedly, gene amplification of HER-2 and uPAR occurred most frequently in the same TC and patient, suggesting a biological bias and potential advantage for coamplification. Expression of HER-2 and uPAR in primary tumors predicted gene status in 100 and 92% of patients, respectively.


Biochemical and Biophysical Research Communications | 2010

miR-122-induced down-regulation of HO-1 negatively affects miR-122-mediated suppression of HBV

Lipeng Qiu; Hongxia Fan; Wensong Jin; Bao Zhao; Yanzhong Wang; Ying Ju; Lizhao Chen; Yu Chen; Zhongping Duan; Songdong Meng

As the most abundant liver-specific microRNA (miRNA), miR-122 has been extensively studied for its role in the regulation of lipid metabolism, hepatocarcinogenesis and hepatitis C virus (HCV) replication, but little is known regarding its role in the replication of Hepatitis B virus (HBV), a highly prevalent hepatotropic virus that can cause life-threatening complications. In this study we examined the effects of antisense inhibition of miR-122 and transfection of a miR-122 mimic on HBV expression in hepatoma cells. The over-expression of miR-122 inhibited HBV expression, whereas the depletion of endogenous miR-122 resulted in increased production of HBV in transfected cells. We further found that the down-regulation of Heme oxygenase-1 (HO-1) by miR-122 plays a negative role in the miR-122-mediated inhibition of viral expression. Our study demonstrates the anti-HBV activity of miR-122, suggesting that therapies that increase miR-122 and HO-1 may be an effective strategy to limit HBV replication.


Cytotherapy | 2005

Methods for isolating circulating epithelial cells and criteria for their classification as carcinoma cells

T. Fehm; E.F. Solomayer; Songdong Meng; Thomas F. Tucker; Nancy Lane; Jianqiang Wang; G. Gebauer

Novel assay methods developed for the isolation and characterization of circulating tumor cells (CTC) of epithelial origin offer the potential of markers for the non-invasive gathering of clinical information relevant to the diagnosis, evolution and treatment of carcinoma. Of the numerous techniques currently used to analyze CTC, slide-based assays are perhaps the most common. While traditional combined immunocytochemical/brightfield microscopy systems continue to be the most frequently employed, fluorescence-based analysis is gaining in importance. This is partly because fluorescence microscopy analysis of slide-mounted CTC can provide simultaneously cytogenetic as well as morphologic and multiple phenotypic information. In particular, fluorescence microscopy analysis of slide-mounted CTC can accurately determine genetic changes at the chromosomal level in patients with recurrent disease. More importantly, by identifying genetic aberrations in CTC, it becomes possible to choose those patients most likely to benefit from a given treatment. The potential of this technique has already been demonstrated by employing fluorescence in situ hybridization (FISH) methods to measure expression of the HER2/neu gene in tissue from patients with breast carcinoma for the specific purpose of identifying those patients most likely to respond to Trastuzumab targeted therapy. Here, we review the major methodologies used in the preparation and analysis of the slide-based assays.


Protein & Cell | 2012

MiR-122 in hepatic function and liver diseases

Jun Hu; Yaxing Xu; Junli Hao; Saifeng Wang; Changfei Li; Songdong Meng

As the most abundant liver-specific microRNA, microRNA-122 (miR-122) is involved in various physiological processes in hepatic function as well as in liver pathology. There is now compelling evidence that miR-122, as a regulator of gene networks and pathways in hepatocytes, plays a central role in diverse aspects of hepatic function and in the progress of liver diseases. This liver-enriched transcription factors-regulated miRNA promotes differentiation of hepatocytes and regulates lipid metabolism. With regard to liver diseases, miR-122 was shown to stimulate hepatitis C virus (HCV) replication through a unique and unusual interaction with two binding sites in the 5′-UTR of HCV genome to mediate the stability of the viral RNA, whereas inhibit the expression and replication of hepatitis B virus (HBV) by a miR-122-cylin G1/p53-HBV enhancer regulatory pathway. In addition, miR-122 acts as a suppressor of cell proliferation and malignant transformation of hepatocytes with remarkable tumor inhibition activity. Notably, a clinical trial targeting miR-122 with the anti-miR-122 oligonucleotides miravirsen, the first miRNA targeted drug, has been initiated for treatment of HCV infection. With further understanding of the comprehensive roles of miR-122 in hepatic functions and the mechanisms involved in miR-122 down-regulation in chronic hepatitis or hepatocellular carcinoma, miR-122 appears to be a promising candidate for effective therapeutic approaches against tumor and infectious diseases.


Journal of Virology | 2013

Hepatitis B Virus mRNA-Mediated miR-122 Inhibition Upregulates PTTG1-Binding Protein, Which Promotes Hepatocellular Carcinoma Tumor Growth and Cell Invasion

Changfei Li; Yanzhong Wang; Saifeng Wang; Bo Wu; Junli Hao; Hongxia Fan; Ying Ju; Yuping Ding; Lizhao Chen; Xiaoyu Chu; Wenjun Liu; Xin Ye; Songdong Meng

ABSTRACT As the most abundant liver-specific microRNA, miR-122 is involved in diverse aspects of hepatic function and neoplastic transformation. Our previous study showed that miR-122 levels are significantly decreased in hepatitis B virus (HBV)-infected patients, which may facilitate viral replication and persistence (S. Wang, L. Qiu, X. Yan, W. Jin, Y. Wang, L. Chen, E. Wu, X. Ye, G. F. Gao, F. Wang, Y. Chen, Z. Duan, and S. Meng, Hepatology 55:730–741, 2012). Loss of miR-122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G1-modulated P53 activity.). In this study, we provide evidence that all HBV mRNAs harboring an miR-122 complementary site act as sponges to bind and sequester endogenous miR-122, indicating that the highly redundant HBV transcripts are involved in HBV-mediated miR-122 suppression. We next identified pituitary tumor-transforming gene 1 (PTTG1) binding factor (PBF) as a target of miR-122 and demonstrated that HBV replication causes an obvious increase in PBF levels. Furthermore, we observed that the miR-122 levels were decreased and PBF was upregulated in chronic hepatitis B (CHB) and hepatocellular carcinoma (HCC). Overexpression and knockdown studies both revealed that PBF enhances proliferation and invasion of HCC cells, and silencing PBF resulted in a dramatic reduction of HCC tumor growth in vivo. Mechanistic analysis demonstrated that PBF interacts with PTTG1 and facilitates PTTG1 nuclear translocation, subsequently increasing its transcriptional activities. Therefore, we identified a novel HBV mRNA-miR-122-PBF regulatory pathway that facilitates malignant hepatocyte growth and invasion in CHB which may contribute to CHB-induced HCC development and progression. Our work underscores the reciprocal interplay of host miRNA sequestration and depletion by viral mRNAs, which may contribute to chronic-infection-related cancer.


The Lancet | 2001

HBV-specific peptide associated with heat-shock protein gp96

Songdong Meng; Tong Gao; George F. Gao; Po Tien

Glycoprotein 96 (gp96), a member of the heat-shock protein family, can elicit priming of antigen-specfic cytotoxic T lymphocytes, when bound to antigenic viral or tumour peptides. We used direct peptide isolation from purified gp96 and microsequencing to show that a virus-specific peptide is bound to gp96 derived from liver tissues of patients with hepatitis B virus (HBV)-induced hepatocellular carcinoma. This virus-specific peptide has potential for engineering tumour vaccines against hepatocellular carcinoma and chronic HBV infection.


Journal of Immunology | 2013

MicroRNA-146a Feedback Suppresses T Cell Immune Function by Targeting Stat1 in Patients with Chronic Hepatitis B

Saifeng Wang; Xiaojun Zhang; Ying Ju; Bao Zhao; Xiaoli Yan; Jun Hu; Lei Shi; Lebing Yang; Zhibo Ma; Lizhao Chen; Yali Liu; Zhongping Duan; Xinyue Chen; Songdong Meng

More than 350 million people are chronically infected with hepatitis B virus, and dysfunctional T cell responses contribute to persistent viral infection and immunopathogenesis in chronic hepatitis B (CHB). However, the underlying mechanisms of T cell hyporesponsiveness remain largely undefined. Given the important role of microRNA-146a (miR-146a) in diverse aspects of lymphocyte function, we investigated the potential role and mechanism of miR-146a in regulating T cell immune responses in CHB. We found that miR-146a expression in T cells is significantly upregulated in CHB compared with healthy controls, and miR-146a levels were correlated with serum alanine aminotransaminase levels. Both inflammatory cytokines and viral factors led to miR-146a upregulation in T cells. Stat1 was identified as a miR-146a target that is involved in antiviral cytokine production and the cytotoxicity of CD4+ and CD8+ T cells. In vitro blockage of miR-146a in T cells in CHB greatly enhanced virus-specific T cell activity. Therefore, our work demonstrates that miR-146a upregulation in CHB causes impaired T cell function, which may contribute to immune defects and immunopathogenesis during chronic viral infection.


European Journal of Immunology | 2009

Treg suppress CTL responses upon immunization with HSP gp96

Zhen Liu; Xinghui Li; Lipeng Qiu; Xiaojun Zhang; Lizhao Chen; Sheng Cao; Fusheng Wang; Songdong Meng

HSP gp96‐based vaccines have been trialled in rodent models and, more recently, in humans. Better understanding of gp96s immunomodulatory role will help with the design of more effective strategies for treatment of cancer and infectious diseases. In this study, we monitored the activities of T cells and activation of Treg in BABL/c mice after immunization using different doses of gp96 as adjuvant. We found that co‐injection of gp96 simultaneously stimulated both CTL and Treg activity. Activation of CTL at low dose was far more pronounced than Treg activation. Treg population and suppression increased with gp96 dose, eventually abrogating the T‐cell response induced by immunization. Low‐dose cyclophosphamide treatment could restore the T‐cell responses lost after high‐dose gp96 adjuvant injection by suppression of Treg activation. We further examined the effect of different doses of gp96 or N355 peptide administration on tumor rejection. Our results provide new insights into the mechanisms of gp96‐mediated balance between regulatory and responder T cells, which may facilitate future development of an effective gp96‐based therapeutic vaccine.

Collaboration


Dive into the Songdong Meng's collaboration.

Top Co-Authors

Avatar

Lizhao Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Changfei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

George F. Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bao Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongxia Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Ju

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Saifeng Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xin Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge