Songi Han
University of California, Santa Barbara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Songi Han.
Journal of the American Chemical Society | 2009
Brandon D. Armstrong; Songi Han
Surface and internal water dynamics of molecules and soft matter are of great relevance to their structure and function, yet the experimental determination under ambient and steady-state conditions is challenging. One of the most powerful approaches to measure local water dynamics within 5 A distances is to utilize the modulation of the nuclear spin relaxation rate of water protons through their time-dependent dipolar coupling to paramagnetic probes, here nitroxide spin labels. We recently introduced a method to obtain local water dynamics through Overhauser dynamic nuclear polarization (DNP). This has a unique advantage over other related techniques available in that a highly amplified proton nuclear magnetic resonance signal carries the information, allowing the use of minute microliter sample volumes and 100 muM sample concentrations. The outcome of our approach is the quantitative determination of the key DNP parameter known as the coupling factor, which provides local translational diffusion dynamics of the solvent within 5 A of the spin label. In contrast to recent reports that the coupling factor for nitroxide radicals cannot be quantified due to the difficulty in determining the saturation factor for the spin label, we show the saturation factor can be accurately determined and for the first time present agreement between measurements and theory. We discuss the discrepancy between the related field cycling relaxometery technique and DNP in determining the coupling factor and present arguments in support of the DNP-determined value. DNP measurements of local hydration dynamics around nitroxides in bulk water and on the surface of proteins are presented.
Journal of the American Chemical Society | 2011
Brandon D. Armstrong; Jennifer Choi; Carlos Silva López; Darryl A. Wesener; Wayne L. Hubbell; Silvia Cavagnero; Songi Han
Water-protein interactions play a direct role in protein folding. The chain collapse that accompanies protein folding involves extrusion of water from the nonpolar core. For many proteins, including apomyoglobin (apoMb), hydrophobic interactions drive an initial collapse to an intermediate state before folding to the final structure. However, the debate continues as to whether the core of the collapsed intermediate state is hydrated and, if so, what the dynamic nature of this water is. A key challenge is that protein hydration dynamics is significantly heterogeneous, yet suitable experimental techniques for measuring hydration dynamics with site-specificity are lacking. Here, we introduce Overhauser dynamic nuclear polarization at 0.35 T via site-specific nitroxide spin labels as a unique tool to probe internal and surface protein hydration dynamics with site-specific resolution in the molten globular, native, and unfolded protein states. The (1)H NMR signal enhancement of water carries information about the local dynamics of the solvent within ∼10 Å of a spin label. EPR is used synergistically to gain insights on local polarity and mobility of the spin-labeled protein. Several buried and solvent-exposed sites of apoMb are examined, each bearing a covalently bound nitroxide spin label. We find that the nonpoloar core of the apoMb molten globule is hydrated with water bearing significant translational dynamics, only 4-6-fold slower than that of bulk water. The hydration dynamics of the native state is heterogeneous, while the acid-unfolded state bears fast-diffusing hydration water. This study provides a high-resolution glimpse at the folding-dependent nature of protein hydration dynamics.
Biomacromolecules | 2012
Chi-Yuan Cheng; J. Wang; Ravinath Kausik; Ka Yee C. Lee; Songi Han
Amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymers, also known as poloxamers, have broad biomembrane activities. To illustrate the nature of these activities, (1)H Overhauser dynamic nuclear polarization NMR spectroscopy was employed to sensitively detect polymer-lipid membrane interactions through the modulation of local hydration dynamics in lipid membranes. Our study shows P188, the most hydrophilic poloxamer that is a known membrane sealant, weakly adsorbs on the membrane surface, yet effectively retards membrane hydration dynamics. Contrarily, P181, the most hydrophobic poloxamer that is a known membrane permeabilizer, initially embeds at lipid headgroups and enhances intrabilayer water diffusivity. Unprecedented resolution for differentiating weak surface adsorption versus translocation of polymers to membranes is obtained by probing local water diffusivity in lipid bilayer systems. Our results illustrate that the relative hydrophilic/hydrophobic ratio of the polymer dictates its functions. These findings gleaned from local hydration dynamics are well supported by a thermodynamics study presented in the accompanying paper (Wang, J.-Y.; Marks, J. M.; Lee, K. Y. C. Biomacromolecules, 2012, DOI: 10.1021/bm300847x).
Progress in Nuclear Magnetic Resonance Spectroscopy | 2013
John M. Franck; Anna Pavlova; John A. Scott; Songi Han
Liquid state Overhauser effect Dynamic Nuclear Polarization (ODNP) has experienced a recent resurgence of interest. The ODNP technique described here relies on the double resonance of electron spin resonance (ESR) at the most common, i.e. X-band (∼10GHz), frequency and ¹H nuclear magnetic resonance (NMR) at ∼15 MHz. It requires only a standard continuous wave (cw) ESR spectrometer with an NMR probe inserted or built into an X-band cavity. We focus on reviewing a new and powerful manifestation of ODNP as a high frequency NMR relaxometry tool that probes dipolar cross relaxation between the electron spins and the ¹H nuclear spins at X-band frequencies. This technique selectively measures the translational mobility of water within a volume extending 0.5-1.5 nm outward from a nitroxide radical spin probe that is attached to a targeted site of a macromolecule. It allows one to study the dynamics of water that hydrates or permeates the surface or interior of proteins, polymers, and lipid membrane vesicles. We begin by reviewing the recent advances that have helped develop ODNP into a tool for mapping the dynamic landscape of hydration water with sub-nanometer locality. In order to bind this work coherently together and to place it in the context of the extensive body of research in the field of NMR relaxometry, we then rephrase the analytical model and extend the description of the ODNP-derived NMR signal enhancements. This extended model highlights several aspects of ODNP data analysis, including the importance of considering all possible effects of microwave sample heating, the need to consider the error associated with various relaxation rates, and the unique ability of ODNP to probe the electron-¹H cross-relaxation process, which is uniquely sensitive to fast (tens of ps) dynamical processes. By implementing the relevant corrections in a stepwise fashion, this paper draws a consensus result from previous ODNP procedures and then shows how such data can be further corrected to yield clear and reproducible saturation of the NMR hyperpolarization process. Finally, drawing on these results, we broadly survey the previous ODNP dynamics literature. We find that the vast number of published, empirical hydration dynamics data can be reproducibly classified into regimes of surface, interfacial, vs. buried water dynamics.
Journal of Magnetic Resonance | 2008
Brandon D. Armstrong; Mark D. Lingwood; Evan R. McCarney; E. R. Brown; Peter Blümler; Songi Han
This paper concerns instrumental approaches to obtain large dynamic nuclear polarization (DNP) enhancements in a completely portable system. We show that at fields of 0.35 T under ambient conditions and at X-band frequencies, 1H enhancements of >100-fold can be achieved using nitroxide radical systems, which is near the theoretical maximum for 1H polarization using the Overhauser effect at this field. These large enhancements were obtained using a custom built microwave transmitter and a commercial TE102 X-band resonant cavity. The custom built microwave transmitter is compact, so when combined with a permanent magnet it is readily transportable. Our commercial X-band resonator was modified to be tunable over a range of approximately 9.5-10 GHz, giving added versatility to our fixed field portable DNP system. In addition, a field adjustable Halbach permanent magnet has also been employed as another means for matching the electron spin resonance condition. Both portable setups provide large signal enhancements and with improvements in design and engineering, greater than 100-fold 1H enhancements are feasible.
Structure | 2014
Devin T. Edwards; Thomas Huber; Sunyia Hussain; Katherine M. Stone; Maia Kinnebrew; Ilia Kaminker; Erez Matalon; Mark S. Sherwin; Daniella Goldfarb; Songi Han
The structural organization of the functionally relevant, hexameric oligomer of green-absorbing proteorhodopsin (G-PR) was obtained from double electron-electron resonance (DEER) spectroscopy utilizing conventional nitroxide spin labels and recently developed Gd3+ -based spin labels. G-PR with nitroxide or Gd3+ labels was prepared using cysteine mutations at residues Trp58 and Thr177. By combining reliable measurements of multiple interprotein distances in the G-PR hexamer with computer modeling, we obtained a structural model that agrees with the recent crystal structure of the homologous blue-absorbing PR (B-PR) hexamer. These DEER results provide specific distance information in a membrane-mimetic environment and across loop regions that are unresolved in the crystal structure. In addition, the X-band DEER measurements using nitroxide spin labels suffered from multispin effects that, at times, compromised the detection of next-nearest neighbor distances. Performing measurements at high magnetic fields with Gd3+ spin labels increased the sensitivity considerably and alleviated the difficulties caused by multispin interactions.
Physical Chemistry Chemical Physics | 2010
Brandon D. Armstrong; Devin T. Edwards; Richard J. Wylde; Shamon A. Walker; Songi Han
We present our experimental setup for both dynamic nuclear polarization (DNP) and electron paramagnetic resonance (EPR) detection at 7 T using a quasi-optical bridge for propagation of the 200 GHz beam and our initial results obtained at 4 K. Our quasi-optical bridge allows the polarization of the microwave beam to be changed from linear to circular. Only the handedness of circular polarization in the direction of the Larmor precession is absorbed by the electron spins, so a gain in effective microwave power of two is expected for circular vs. linear polarization. Our results show an increase in DNP signal enhancement of 28% when using circularly vs. linearly polarized radiation. We measured a maximum signal enhancement of 65 times that of thermal polarization for a (13)C labeled urea sample corresponding to 3% nuclear spin polarization. Since the time constant for nuclear spin polarization buildup during microwave irradiation is 10 times faster than the (13)C nuclear spin T(1), the actual gain in detection sensitivity with DNP is much greater.
Journal of Magnetic Resonance | 2010
Mark D. Lingwood; Ting Ann Siaw; Napapon Sailasuta; Brian D. Ross; Pratip Bhattacharya; Songi Han
We describe and demonstrate a system to generate hyperpolarized water in the 0.35 T fringe field of a clinical 1.5 T whole-body magnetic resonance imaging (MRI) magnet. Once generated, the hyperpolarized water is quickly and continuously transferred from the 0.35 T fringe to the 1.5 T center field of the same magnet for image acquisition using standard MRI equipment. The hyperpolarization is based on Overhauser dynamic nuclear polarization (DNP), which effectively and quickly transfers the higher spin polarization of free radicals to nuclear spins at ambient temperatures. We visualize the dispersion of hyperpolarized water as it flows through water-saturated systems by utilizing an observed -15-fold DNP signal enhancement with respect to the unenhanced (1)H MRI signal of water at 1.5 T. The experimental DNP apparatus presented here is readily portable and can be brought to and used with any conventional unshielded MRI system. A new method of immobilizing radicals to gel beads via polyelectrolyte linker arms is described, which led to superior flow Overhauser DNP performance compared to previously presented gels. We discuss the general applicability of Overhauser DNP of water and aqueous solutions in the fringe field of commercially available magnets with central fields up to 4.7 T.
New Journal of Physics | 2011
Julia H. Ortony; Chi Yuan Cheng; John M. Franck; Ravinath Kausik; Anna Pavlova; Jasmine N. Hunt; Songi Han
We probe the translational dynamics of the hydration water surrounding the macromolecular surfaces of selected polyelectrolytes, lipid vesicles and intrinsically disordered proteins with site specificity in aqueous solutions. These measurements are made possible by the recent development of a new instrumental and methodological approach based on Overhauser dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. This technique selectively amplifies 1H NMR signals of hydration water around a spin label that is attached to a molecular site of interest. The selective 1H NMR amplification within molecular length scales of a spin label is achieved by utilizing short-distance range (~r−3) magnetic dipolar interactions between the 1H spin of water and the electron spin of a nitroxide radical-based label. Key features include the fact that only minute quantities (<10 μl) and dilute (≥100 μM) sample concentrations are needed. There is no size limit on the macromolecule or molecular assembly to be analyzed. Hydration water with translational correlation times between 10 and 800 ps is measured within ~10 A distance of the spin label, encompassing the typical thickness of a hydration layer with three water molecules across. The hydration water moving within this time scale has significant implications, as this is what is modulated whenever macromolecules or molecular assemblies undergo interactions, binding or conformational changes. We demonstrate, with the examples of polymer complexation, protein aggregation and lipid–polymer interaction, that the measurements of interfacial hydration dynamics can sensitively and site specifically probe macromolecular interactions.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Chi-Yuan Cheng; Jobin Varkey; Mark R. Ambroso; Ralf Langen; Songi Han
Significance The structural properties of a membrane-associating protein at the water–membrane interfaces are intimately linked to its biological function, but they are difficult to characterize using existing biophysical tools. We identify the existence of a distinct intrinsic gradient of water diffusion across the lipid bilayer, encompassing a thick surface hydration layer above the lipid membrane surface, and debut an approach to exploit this gradient as a highly sensitive ruler to determine the topology, immersion depth, and location of a membrane associating protein, including the segments residing well above the membrane surface, that are otherwise difficult to resolve. This study demonstrates a potential of a broadly applicable approach for the structure–dynamics–function study of membrane proteins, membrane systems, and beyond. Knowing the topology and location of protein segments at water–membrane interfaces is critical for rationalizing their functions, but their characterization is challenging under physiological conditions. Here, we debut a unique spectroscopic approach by using the hydration dynamics gradient found across the phospholipid bilayer as an intrinsic ruler for determining the topology, immersion depth, and orientation of protein segments in lipid membranes, particularly at water–membrane interfaces. This is achieved through the site-specific quantification of translational diffusion of hydration water using an emerging tool, 1H Overhauser dynamic nuclear polarization (ODNP)-enhanced NMR relaxometry. ODNP confirms that the membrane-bound region of α-synuclein (αS), an amyloid protein known to insert an amphipathic α-helix into negatively charged phospholipid membranes, forms an extended α-helix parallel to the membrane surface. We extend the current knowledge by showing that residues 90–96 of bound αS, which is a transition segment that links the α-helix and the C terminus, adopt a larger loop than an idealized α-helix. The unstructured C terminus gradually threads through the surface hydration layers of lipid membranes, with the beginning portion residing within 5–15 Å above the phosphate level, and only the very end of C terminus surveying bulk water. Remarkably, the intrinsic hydration dynamics gradient along the bilayer normal extends to 20–30 Å above the phosphate level, as demonstrated with a peripheral membrane protein, annexin B12. ODNP offers the opportunity to reveal previously unresolvable structure and location of protein segments well above the lipid phosphate, whose structure and dynamics critically contribute to the understanding of functional versatility of membrane proteins.