Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Songqin Pan is active.

Publication


Featured researches published by Songqin Pan.


The Plant Cell | 2004

The Vegetative Vacuole Proteome of Arabidopsis thaliana Reveals Predicted and Unexpected Proteins

Clay J. Carter; Songqin Pan; Jan Zouhar; Emily L. Avila; Thomas Girke; Natasha V. Raikhel

Vacuoles play central roles in plant growth, development, and stress responses. To better understand vacuole function and biogenesis we have characterized the vegetative vacuolar proteome from Arabidopsis thaliana. Vacuoles were isolated from protoplasts derived from rosette leaf tissue. Total purified vacuolar proteins were then subjected either to multidimensional liquid chromatography/tandem mass spectrometry or to one-dimensional SDS-PAGE coupled with nano-liquid chromatography/tandem mass spectrometry (nano-LC MS/MS). To ensure maximum coverage of the proteome, a tonoplast-enriched fraction was also analyzed separately by one-dimensional SDS-PAGE followed by nano-LC MS/MS. Cumulatively, 402 proteins were identified. The sensitivity of our analyses is indicated by the high coverage of membrane proteins. Eleven of the twelve known vacuolar-ATPase subunits were identified. Here, we present evidence of four tonoplast-localized soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs), representing each of the four groups of SNARE proteins necessary for membrane fusion. In addition, potential cargo of the N- and C-terminal propeptide sorting pathways, association of the vacuole with the cytoskeleton, and the vacuolar localization of 89 proteins of unknown function are identified. A detailed analysis of these proteins and their roles in vacuole function and biogenesis is presented.


Current Biology | 2004

VPEγ exhibits a caspase-like activity that contributes to defense against pathogens

Enrique Rojo; Raquel Martín; Clay J. Carter; Jan Zouhar; Songqin Pan; Julia M. Plotnikova; Hailing Jin; Manuel Paneque; José J. Sánchez-Serrano; Barbara Baker; Frederick M. Ausubel; Natasha V. Raikhel

BACKGROUND Caspases are a family of aspartate-specific cysteine proteases that play an essential role in initiating and executing programmed cell death (PCD) in metazoans. Caspase-like activities have been shown to be required for the initiation of PCD in plants, but the genes encoding those activities have not been identified. VPEgamma, a cysteine protease, is induced during senescence, a form of PCD in plants, and is localized in precursor protease vesicles and vacuoles, compartments associated with PCD processes in plants. RESULTS We show that VPEgamma binds in vivo to a general caspase inhibitor and to caspase-1-specific inhibitors, which block the activity of VPEgamma. A cysteine protease inhibitor, cystatin, accumulates to 20-fold higher levels in vpegamma mutants. Homologs of cystatin are known to suppress hypersensitive cell death in plant and animal systems. We also report that infection with an avirulent strain of Pseudomonas syringae results in an increase of caspase-1 activity, and this increase is partially suppressed in vpegamma mutants. Plants overexpressing VPEgamma exhibit a greater amount of ion leakage during infection with P. syringae, suggesting that VPEgamma may regulate cell death progression during plant-pathogen interaction. VPEgamma expression is induced after infection with P. syringae, Botrytis cinerea, and turnip mosaic virus, and knockout of VPEgamma results in increased susceptibility to these pathogens. CONCLUSIONS We conclude that VPEgamma is a caspase-like enzyme that has been recruited in plants to regulate vacuole-mediated cell dismantling during cell death, a process that has significant influence in the outcome of a diverse set of plant-pathogen interactions.


Circulation Research | 2009

AMP-Activated Protein Kinase Functionally Phosphorylates Endothelial Nitric Oxide Synthase Ser633

Zhen Chen; I-Chen Peng; Wei Sun; Mei-I Su; Pang-Hung Hsu; Yi Fu; Yi Zhu; Kathryn DeFea; Songqin Pan; Ming-Daw Tsai; John Y.-J. Shyy

Endothelial nitric oxide synthase (eNOS) plays a central role in maintaining cardiovascular homeostasis by controlling NO bioavailability. The activity of eNOS in vascular endothelial cells (ECs) largely depends on posttranslational modifications, including phosphorylation. Because the activity of AMP-activated protein kinase (AMPK) in ECs can be increased by multiple cardiovascular events, we studied the phosphorylation of eNOS Ser633 by AMPK and examined its functional relevance in the mouse models. Shear stress, atorvastatin, and adiponectin all increased AMPK Thr172 and eNOS Ser633 phosphorylations, which were abolished if AMPK was pharmacologically inhibited or genetically ablated. The constitutively active form of AMPK or an AMPK agonist caused a sustained Ser633 phosphorylation. Expression of gain-/loss-of-function eNOS mutants revealed that Ser633 phosphorylation is important for NO production. The aorta of AMPK&agr;2−/− mice showed attenuated atorvastatin-induced eNOS phosphorylation. Nano–liquid chromatography/tandem mass spectrometry (LC/MS/MS) confirmed that eNOS Ser633 was able to compete with Ser1177 or acetyl-coenzyme A carboxylase Ser79 for AMPK&agr; phosphorylation. Nano-LC/MS/MS confirmed that eNOS purified from AICAR-treated ECs was phosphorylated at both Ser633 and Ser1177. Our results indicate that AMPK phosphorylation of eNOS Ser633 is a functional signaling event for NO bioavailability in ECs.


Molecular and Cellular Biology | 2007

SOS2 Promotes Salt Tolerance in Part by Interacting with the Vacuolar H+-ATPase and Upregulating Its Transport Activity

Giorgia Batelli; Paul E. Verslues; Fernanda Agius; Quansheng Qiu; Hiroaki Fujii; Songqin Pan; Karen S. Schumaker; Stefania Grillo; Jian-Kang Zhu

ABSTRACT The salt overly sensitive (SOS) pathway is critical for plant salt stress tolerance and has a key role in regulating ion transport under salt stress. To further investigate salt tolerance factors regulated by the SOS pathway, we expressed an N-terminal fusion of the improved tandem affinity purification tag to SOS2 (NTAP-SOS2) in sos2-2 mutant plants. Expression of NTAP-SOS2 rescued the salt tolerance defect of sos2-2 plants, indicating that the fusion protein was functional in vivo. Tandem affinity purification of NTAP-SOS2-containing protein complexes and subsequent liquid chromatography-tandem mass spectrometry analysis indicated that subunits A, B, C, E, and G of the peripheral cytoplasmic domain of the vacuolar H+-ATPase (V-ATPase) were present in a SOS2-containing protein complex. Parallel purification of samples from control and salt-stressed NTAP-SOS2/sos2-2 plants demonstrated that each of these V-ATPase subunits was more abundant in NTAP-SOS2 complexes isolated from salt-stressed plants, suggesting that the interaction may be enhanced by salt stress. Yeast two-hybrid analysis showed that SOS2 interacted directly with V-ATPase regulatory subunits B1 and B2. The importance of the SOS2 interaction with the V-ATPase was shown at the cellular level by reduced H+ transport activity of tonoplast vesicles isolated from sos2-2 cells relative to vesicles from wild-type cells. In addition, seedlings of the det3 mutant, which has reduced V-ATPase activity, were found to be severely salt sensitive. Our results suggest that regulation of V-ATPase activity is an additional key function of SOS2 in coordinating changes in ion transport during salt stress and in promoting salt tolerance.


Journal of Biological Chemistry | 2008

Human ATAC Is a GCN5/PCAF-containing Acetylase Complex with a Novel NC2-like Histone Fold Module That Interacts with the TATA-binding Protein

Yuan-Liang Wang; Francesco Faiola; Muyu Xu; Songqin Pan; Ernest Martinez

Eukaryotic GCN5 acetyltransferases influence diverse biological processes by acetylating histones and non-histone proteins and regulating chromatin and gene-specific transcription as part of multiprotein complexes. In lower eukaryotes and invertebrates, these complexes include the yeast ADA complex that is still incompletely understood; the SAGA (Spt-Ada-Gcn5 acetylase) complexes from yeast to Drosophila that are mostly coactivators; and the ATAC (Ada Two-A containing) complex, only known in Drosophila and still poorly characterized. In contrast, vertebrate organisms, express two paralogous GCN5-like acetyltransferases (GCN5 and PCAF), which have been found so far only in SAGA-type complexes referred to hereafter as the STAGA (SPT3-TAF9-GCN5/PCAF acetylase) complexes. We now report the purification and characterization of vertebrate (human) ATAC-type complexes and identify novel components of STAGA. We show that human ATAC complexes incorporate in addition to GCN5 or PCAF (GCN5/PCAF), other epigenetic coregulators (ADA2-A, ADA3, STAF36, and WDR5), cofactors of chromatin assembly/remodeling and DNA replication machineries (POLE3/CHRAC17 and POLE4), the stress- and TGFβ-activated protein kinase (TAK1/MAP3K7) and MAP3-kinase regulator (MBIP), additional cofactors of unknown function, and a novel YEATS2-NC2β histone fold module that interacts with the TATA-binding protein (TBP) and negatively regulates transcription when recruited to a promoter. We further identify the p38 kinase-interacting protein (p38IP/FAM48A) as a novel component of STAGA with distant similarity to yeast Spt20. These results suggest that vertebrate ATAC-type and STAGA-type complexes link specific extracellular signals to modification of chromatin structure and regulation of the basal transcription machinery.


Molecular and Cellular Biology | 2005

Dual Regulation of c-Myc by p300 via Acetylation-Dependent Control of Myc Protein Turnover and Coactivation of Myc-Induced Transcription

Francesco Faiola; Xiaohui Liu; Szuying Lo; Songqin Pan; Kangling Zhang; Elena S. Lymar; Anthony Farina; Ernest Martinez

ABSTRACT The c-Myc oncoprotein (Myc) controls cell fate by regulating gene transcription in association with a DNA-binding partner, Max. While Max lacks a transcription regulatory domain, the N terminus of Myc contains a transcription activation domain (TAD) that recruits cofactor complexes containing the histone acetyltransferases (HATs) GCN5 and Tip60. Here, we report a novel functional interaction between Myc TAD and the p300 coactivator-acetyltransferase. We show that p300 associates with Myc in mammalian cells and in vitro through direct interactions with Myc TAD residues 1 to 110 and acetylates Myc in a TAD-dependent manner in vivo at several lysine residues located between the TAD and DNA-binding domain. Moreover, the Myc:Max complex is differentially acetylated by p300 and GCN5 and is not acetylated by Tip60 in vitro, suggesting distinct functions for these acetyltransferases. Whereas p300 and CBP can stabilize Myc independently of acetylation, p300-mediated acetylation results in increased Myc turnover. In addition, p300 functions as a coactivator that is recruited by Myc to the promoter of the human telomerase reverse transcriptase gene, and p300/CBP stimulates Myc TAD-dependent transcription in a HAT domain-dependent manner. Our results suggest dual roles for p300/CBP in Myc regulation: as a Myc coactivator that stabilizes Myc and as an inducer of Myc instability via direct Myc acetylation.


Cell Research | 2012

Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis

Georgia Drakakaki; Wilhelmina van de Ven; Songqin Pan; Yansong Miao; Junqi Wang; Nana F. Keinath; Brent Weatherly; Liwen Jiang; Karin Schumacher; Glenn R. Hicks; Natasha V. Raikhel

The endomembrane system is a complex and dynamic intracellular trafficking network. It is very challenging to track individual vesicles and their cargos in real time; however, affinity purification allows vesicles to be isolated in their natural state so that their constituent proteins can be identified. Pioneering this approach in plants, we isolated the SYP61 trans-Golgi network compartment and carried out a comprehensive proteomic analysis of its contents with only minimal interference from other organelles. The proteome of SYP61 revealed the association of proteins of unknown function that have previously not been ascribed to this compartment. We identified a complete SYP61 SNARE complex, including regulatory proteins and validated the proteome data by showing that several of these proteins associated with SYP61 in planta. We further identified the SYP121-complex and cellulose synthases, suggesting that SYP61 plays a role in the exocytic trafficking and the transport of cell wall components to the plasma membrane. The presence of proteins of unknown function in the SYP61 proteome including ECHIDNA offers the opportunity to identify novel trafficking components and cargos. The affinity purification of plant vesicles in their natural state provides a basis for further analysis and dissection of complex endomembrane networks. The approach is widely applicable and can afford the study of several vesicle populations in plants, which can be compared with the SYP61 vesicle proteome.


The Plant Cell | 1999

Specific Interactions with TBP and TFIIB in Vitro Suggest That 14-3-3 Proteins May Participate in the Regulation of Transcription When Part of a DNA Binding Complex

Songqin Pan; Paul C. Sehnke; Robert J. Ferl; William B. Gurley

The 14-3-3 family of multifunctional proteins is highly conserved among animals, plants, and yeast. Several studies have shown that these proteins are associated with a G-box DNA binding complex and are present in the nucleus in several plant and animal species. In this study, 14-3-3 proteins are shown to bind the TATA box binding protein (TBP), transcription factor IIB (TFIIB), and the human TBP–associated factor hTAFII32 in vitro but not hTAFII55. The interactions with TBP and TFIIB were highly specific, requiring amino acid residues in the box 1 domain of the 14-3-3 protein. These interactions do not require formation of the 14-3-3 dimer and are not dependent on known 14-3-3 recognition motifs containing phosphoserine. The 14-3-3–TFIIB interaction appears to occur within the same domain of TFIIB that binds the human herpes simplex virus transcriptional activator VP16, because VP16 and 14-3-3 were able to compete for interaction with TFIIB in vitro. In a plant transient expression system, 14-3-3 was able to activate GAL4-dependent β-glucuronidase reporter gene expression at low levels when translationally fused with the GAL4 DNA binding domain. The in vitro binding with general transcription factors TBP and TFIIB together with its nuclear location provide evidence supporting a role for 14-3-3 proteins as transcriptional activators or coactivators when part of a DNA binding complex.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole

Eun Ju Sohn; Marcela Rojas-Pierce; Songqin Pan; Clay J. Carter; Antonio Serrano-Mislata; Francisco Madueño; Enrique Rojo; Marci Surpin; Natasha V. Raikhel

Plants are unique in their ability to store proteins in specialized protein storage vacuoles (PSVs) within seeds and vegetative tissues. Although plants use PSV proteins during germination, before photosynthesis is fully functional, the roles of PSVs in adult vegetative tissues are not understood. Trafficking pathways to PSVs and lytic vacuoles appear to be distinct. Lytic vacuoles are analogous evolutionarily to yeast and mammalian lysosomes. However, it is unclear whether trafficking to PSVs has any analogy to pathways in yeast or mammals, nor is PSV ultrastructure known in Arabidopsis vegetative tissue. Therefore, alternative approaches are required to identify components of this pathway. Here, we show that an Arabidopsis thaliana mutant that disrupts PSV trafficking identified TERMINAL FLOWER 1 (TFL1), a shoot meristem identity gene. The tfl1-19/mtv5 (for “modified traffic to the vacuole”) mutant is specifically defective in trafficking of proteins to the PSV. TFL1 localizes to endomembrane compartments and colocalizes with the putative δ-subunit of the AP-3 adapter complex. Our results suggest a developmental role for the PSV in vegetative tissues.


Plant Molecular Biology | 2004

Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP

Eva Czarnecka-Verner; Songqin Pan; Tarek Salem; William B. Gurley

Plant heat shock transcription factors (HSFs) are capable of transcriptional activation (class A HSFs) or both, activation and repression (class B HSFs). However, the details of mechanism still remain unclear. It is likely, that the regulation occurs through interactions of HSFs with general transcription factors (GTFs), as has been described for numerous other transcription factors. Here, we show that class A HSFs may activate transcription through direct contacts with TATA-binding protein (TBP). Class A HSFs can also interact weakly with TFIIB. Conversely, class B HSFs inhibit promoter activity through an active mechanism of repression that involves the C-terminal regulatory region (CTR) of class B HSFs. Deletion analysis revealed two sites in the CTR of soybean GmHSFB1 potentially involved in protein–protein interactions with GTFs: one is the repressor domain (RD) located in the N-terminal half of the CTR, and the other is a TFIIB binding domain (BD) that shows affinity for TFIIB and is located C-terminally from the RD. A Gal4 DNA binding domain-RD fusion repressed activity of LexA-activators, while Gal4-BD proteins synergistically activated strong and weak transcriptional activators. In vitrobinding studies were consistent with this pattern of activity since the BD region alone interacted strongly with TFIIB, and the presence of RD had an inhibitory effect on TFIIB binding and transcriptional activation.

Collaboration


Dive into the Songqin Pan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xian Chen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Sheng Gu

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jikui Song

University of California

View shared research outputs
Top Co-Authors

Avatar

Muyu Xu

University of California

View shared research outputs
Top Co-Authors

Avatar

Wenbo Ma

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge