Songqing Fan
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Songqing Fan.
Journal of Clinical Investigation | 2010
Sumin Kang; Shannon Elf; Katherine Lythgoe; Taro Hitosugi; Jack Taunton; Wei Zhou; Li Xiong; Dongsheng Wang; Susan Muller; Songqing Fan; Shi-Yong Sun; Adam I. Marcus; Ting Lei Gu; Roberto D. Polakiewicz; Zhuo (Georgia) Chen; Fadlo R. Khuri; Dong M. Shin; Jing Chen
Head and neck squamous cell carcinoma (HNSCC) is one of the most common types of human cancer and frequently metastasizes to LNs. Identifying metastasis-promoting factors is of immense clinical interest, as the prognosis for patients with even a single unilateral LN metastasis is extremely poor. Here, we report that p90 ribosomal S6 kinase 2 (RSK2) promotes human HNSCC cell invasion and metastasis. We determined that RSK2 was overexpressed and activated in highly invasive HNSCC cell lines compared with poorly invasive cell lines. Expression of RSK2 also correlated with metastatic progression in patients with HNSCC. Ectopic expression of RSK2 substantially enhanced the invasive capacity of HNSCC cells, while inhibition of RSK2 activity led to marked attenuation of invasion in vitro. Additionally, shRNA knockdown of RSK2 substantially reduced the invasive and metastatic potential of HNSCC cells in vitro and in vivo in a xenograft mouse model, respectively. Mechanistically, we determined that cAMP-responsive element-binding protein (CREB) and Hsp27 are phosphorylated and activated by RSK2 and are important for the RSK2-mediated invasive ability of HNSCC cells. Our findings suggest that RSK2 is involved in the prometastatic programming of HNSCC cells, through phosphorylation of proteins in a putative signaling network. Moreover, targeting RSK2 markedly attenuates in vitro invasion and in vivo metastasis of HNSCC cells, suggesting that RSK2 may represent a therapeutic target in the treatment of metastatic HNSCC.
Cancer Biology & Therapy | 2009
Songqing Fan; Suresh S. Ramalingam; John Kauh; Zhiheng Xu; Fadlo R. Khuri; Shi-Yong Sun
Eukaryotic translation initiation factor 4E (eIF4E) is a rate-limiting factor for cap-dependent protein synthesis and is regulated by PI3 kinase/mTOR and mitogen-activated protein kinase (MAPK)/Mnk signaling pathways. Recent studies have shown that Mnk-mediated eIF4E phosphorylation is absolutely required for eIF4E’s oncogenic function. Overexpression of eIF4E has been reported in many types of cancers; however, the expression of phosphorylated eIF4E (p-eIF4E) in human cancer tissues, particularly solid tumor tissues, has not been reported. The current study focused on evaluating p-eIF4E expression patterns in the tumor tissues obtained from patients with a variety of malignancies. Using three different tissue microarrays consisting of a total of 380 cases of human cancers and 146 cases of adjacent normal tissues, we detected p-eIF4E positive staining in 63.4% (241/380) of cancers, but only in 30.1% (44/146) of adjacent normal tissues. Thus, p-eIF4E expression is significantly higher in cancers than in adjacent normal tissues (P < 0.001). In general, there was no major difference in p-eIF4E staining between cancers with and without lymph node metastasis. In certain types of maligancies such as lung, gastric and colorectal cancers, p-eIF4E staining was significantly higher in the early stage (T1) than in the late stage (T3) disease (P < 0.05). Collectively, these findings suggest that p-eIF4E may play a critical role in cancer development, particularly early stages of tumorigenesis and support p-eIF4E as a good cancer therapeutic target.
PLOS ONE | 2010
John Kauh; Songqing Fan; Mingjing Xia; Ping Yue; Lily Yang; Fadlo R. Khuri; Shi-Yong Sun
Great efforts have been made to develop novel and efficacious therapeutics against pancreatic cancer to improve the treatment outcomes. Tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL) is such a therapeutic cytokine with selective killing effect toward malignant cells. However, some human pancreatic cancers are intrinsically resistant to TRAIL-mediated apoptosis or therapy. In this study, we have shown that the histone deacetylase inhibitor LBH589 can synergize with TRAIL to augment apoptosis even in TRAIL-resistant cells. LBH589 decreased c-FLIP levels in every tested cell line and survivin levels in some of the tested cell lines. Enforced expression of ectopic c-FLIP, but not survivin, abolished the cooperative induction of apoptosis by the combination of LBH589 and TRAIL, indicating that c-FLIP downregulation plays a critical role in LBH589 sensitization of pancreatic cancer cells to TRAIL. Moreover, LBH589 decreased c-FLIP stability and the presence of the proteasome inhibitor MG132 prevented c-FLIP from reduction by LBH589. Correspondingly, we detected increased levels of ubiqutinated c-FLIP in LBH589-treated cells. These data thus indicate that LBH589 promotes ubiqutin/proteasome-mediated degradation of c-FLIP, leading to downregulation of c-FLIP. Collectively, LBH589 induces c-FLIP degradation and accordingly sensitizes pancreatic cancer cells to TRAIL-induced apoptosis, highlighting a novel therapeutic regimen against pancreatic cancer.
Cancer Biology & Therapy | 2012
Yikun Li; Songqing Fan; Junghui Koo; Ping Yue; Zhuo (Georgia) Chen; Taofeek K. Owonikoko; Suresh S. Ramalingam; Fadlo R. Khuri; Shi-Yong Sun
Eukaryotic translation initiation factor 4E (eIF4E) is the rate-limiting factor for cap-dependent translation initiation, which is known to regulate oncogenesis. Elevated eIF4E and its negative impact on prognosis in human non-small cell lung cancer (NSCLC) have been reported previously. However, its potential as a therapeutic target and role in regulation of sensitivity to EGFR inhibitors is an area of ongoing investigations. In this study, we detected increased levels of eIF4E in 16 human NSCLC cell lines compared with their normal bronchial epithelial cells. Consistently, human tissue array analysis showed that eIF4E expression was significantly higher in human NSCLC tissues than normal tissues. Inhibition of eIF4E using eIF4E siRNA inhibited the growth and invasion of NSCLC cells. These data suggest that eIF4E overexpression plays a crucial role in positive regulation of the growth and invasion of NSCLC cells. By proteomics, we found that eIF4E levels were elevated in erlotinib-resistant cell lines compared with the sensitive parental cell line. In agreement, assembly of the eIF4F cap complex and several oncogenic proteins regulated by the cap-dependent translation mechanism, were also increased in erlotinib-resistant cells. Thus, erlotinib-resistant cells exhibit elevated eIF4E expression and cap-dependent translation. Inhibition of eIF4F with different means (e.g., gene knockdown) downregulated c-Met expression and partially restored cell sensitivity to erlotinib, suggesting that elevated eIF4E contributes to development of erlotinib resistance, likely through positive regulation of c-Met expression. Taken together, we suggest that elevated eIF4E in NSCLC cells is associated with proliferation, invasion and acquired erlotinib resistance.
Oncogene | 2011
Chunyang Li; Songqing Fan; Taofeek K. Owonikoko; Fadlo R. Khuri; Shi-Yong Sun; Runzhao Li
Cancer progression involves multiple complex and interdependent steps, including progressive proliferation, angiogenesis and metastases. The complexity of these processes requires a comprehensive elucidation of the integrated signaling networks for better understanding. EAPII interacts with multiple cancer-related proteins, but its biological significance in cancer development remains unknown. In this report we identified the elevated level of EAPII protein in non-small-cell lung carcinoma (NSCLC) patients and NSCLC cell lines in culture. The oncogenic role of EAPII in lung cancer development was demonstrated using NSCLC cells with genetic manipulations that influence EAPII expression: EAPII overexpression increases proliferation of NSCLC cells with an accelerated transition of cell cycle and facilitates xenograft tumor growth in vivo; EAPII knockdown results in apoptosis of NSCLC cells and reduces xenograft tumor formation. To further explore the mechanism of EAPIIs oncogenic role in lung cancer development and to elucidate the potential signaling pathway(s) that EAPII may impact, we employed antibody array to investigate the alternation of the major signaling pathways in NSCLC cells with altered EAPII level. We found that EAPII overexpression significantly activated Raf1 and ERK1/2, but not c-Jun N-terminal kinase and p38 pathways. Consistently, the protein and mRNA levels of MYC and cyclin D1, which are targets of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK–ERK) pathway, are significantly increased by EAPII overexpression. Taken together, we demonstrated that EAPII is an oncogenic factor and the activation of MAPK–ERK signaling pathway by EAPII may contribute to lung cancer development.
PLOS ONE | 2010
Heath A. Elrod; Songqing Fan; Susan Muller; Georgia Z. Chen; Lin Pan; Mourad Tighiouart; Dong M. Shin; Fadlo R. Khuri; Shi-Yong Sun
Death receptor 5 (DR5) and caspase-8 are major components in the extrinsic apoptotic pathway. The alterations of the expression of these proteins during the metastasis of head and neck squamous cell carcinoma (HNSCC) and their prognostic impact have not been reported. The present study analyzes the expression of DR5 and caspase-8 by immunohistochemistry (IHC) in primary and metastatic HNSCCs and their impact on patient survival. Tumor samples in this study included 100 primary HNSCC with no evidence of metastasis, 100 primary HNSCC with lymph node metastasis (LNM) and 100 matching LNM. IHC analysis revealed a significant loss or downregulation of DR5 expression in primary tumors with metastasis and their matching LNM compared to primary tumors with no evidence of metastasis. A similar trend was observed in caspase-8 expression although it was not statistically significant. Downregulation of caspase-8 and DR5 expression was significantly correlated with poorly differentiated tumors compared to moderately and well differentiated tumors. Univariate analysis indicates that, in HNSCC with no metastasis, higher expression of caspase-8 significantly correlated with better disease-free survival and overall survival. However, in HNSCC with LNM, higher caspase-8 expression significantly correlated with poorer disease-free survival and overall survival. Similar results were also generated when we combined both DR5 and caspase-8. Taken together, we suggest that both DR5 and caspase-8 are involved in regulation of HNSCC metastasis. Our findings warrant further investigation on the dual role of caspase-8 in cancer development.
Cancer Biology & Therapy | 2013
Songqing Fan; Susan Muller; Zhuo Georgia Chen; Lin Pan; Mourad Tighiouart; Dong M. Shin; Fadlo R. Khuri; Shi-Yong Sun
FAS-associated death domain (FADD) is a key adaptor protein that bridges a death receptor (e.g., death receptor 5; DR5) to caspase-8 to form the death-inducing signaling complex during apoptosis. The expression and prognostic impact of FADD in head and neck squamous cell carcinoma (HNSCC) have not been well studied. This study focuses on detecting FADD expression and analyzing its prognostic impact in primary and metastatic HNSCCs. We found a significant increase in FADD expression in primary tumors with lymph node metastasis (LNM) in comparison with primary tumors with no LNM. This increase was significantly less in the matched LNM tissues. Both univariate and multivariable analyses indicated that lower FADD expression was significantly associated with better disease-free survival and overall survival in HNSCC patients with LNM although FADD expression did not significantly affect survival of HNSCC patients without LNM . When combined with DR5 or caspase-8 expression, patients with LNM expressing both low FADD and DR5 or both low FADD and caspase-8 had significantly better prognosis than those expressing both high FADD and DR5 or both high FADD and caspase-8. However, the expression of both low FADD and caspase-8 was significantly linked to worse overall survival compared with both high FADD and caspase-8 expression in HNSCC patients without LNM. Hence, we suggest that FADD alone or together with DR5 and caspase-8 participates in metastatic process of HNSCC.
American Journal of Pathology | 2012
Dan Su; Xiaoying Fu; Songqing Fan; Xiao Wu; Xin Xin Wang; Liya Fu; Xue Yuan Dong; Jianping Jenny Ni; Li Fu; Zhengmao Zhu; Jin-Tang Dong
Whereas estrogen-estrogen receptor α (ER) signaling plays an important role in breast cancer growth, it is also necessary for the differentiation of normal breast epithelial cells. How this functional conversion occurs, however, remains unknown. Based on a genome-wide sequencing study that identified mutations in several breast cancer genes, we examined some of the genes for mutations, expression levels, and functional effects on cell proliferation and tumorigenesis. We present the data for C1orf64 or ER-related factor (ERRF) from 31 cell lines and 367 primary breast cancer tumors. Whereas mutation of ERRF was infrequent (1 of 79 or 1.3%), its expression was up-regulated in breast cancer, and the up-regulation was more common in lower-stage tumors. In addition, increased ERRF expression was significantly associated with ER and/or progesterone receptor (PR) positivity, which was still valid in human epidermal growth factor receptor 2 (HER2)-negative tumors. In ER-positive tumors, ERRF expression was inversely correlated with HER2 status. Furthermore, higher ERRF protein expression was significantly associated with better disease-free survival and overall survival, particularly in ER- and/or PR-positive and HER2-negative tumors (luminal A subtype). Functionally, knockdown of ERRF in two ER-positive breast cancer cell lines, T-47D and MDA-MB-361, suppressed cell growth in vitro and tumorigenesis in xenograft models. These results suggest that ERRF plays a role in estrogen-ER-mediated growth of breast cancer cells and could, thus, be a potential therapeutic target.
Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2013
Xiaodong Sun; Jie Li; Gabriel Sica; Songqing Fan; Yuxiang Wang; Zhengjia Chen; Susan Muller; Zhuo Georgia Chen; Xiaoying Fu; Xue-Yuan Dong; Peng Guo; Dong M. Shin; Jin-Tang Dong
The AT‐motif binding factor 1 (ATBF1) gene is frequently altered at the genetic level in several types of cancer, but its protein expression and subcellular localization have not been well studied in human cancers, including head and neck squamous cell carcinomas (HNSCCs).
Cancer Research | 2011
Xiaodong Sun; Jie Li; Gabriel Sica; Songqing Fan; Yuxiang Wang; Zhengjia Chen; Susan Muller; Zhuo Georgia Chen; Dong M. Shin; Jin-Tang Dong
Purpose: In prostate, breast and gastric cancers, the nuclear protein AT-motif Binding Factor 1 (ATBF1) undergoes frequent reduced mRNA expression and genomic alterations. However, the protein level and subcellular localization of ATBF1 have not been well studied in human cancers. In the present study, we examined ATBF1 expression, localization and function in head and neck squamous cell carcinomas (HNSCCs). Experimental Design: ATBF1 expression and localization were examined by immunohistochemistry in a series of 197 surgically dissected HNSCC specimens and correlated with clinical outcomes. In addition, ATBF1 expression was characterized in five HNSCC cell lines. We then mutated the nuclear localization signal (NLS) of ATBF1 and studied the effects of cytoplasmic versus nuclear ATBF1 on the growth kinetics of the 212LN cell line. Results: ATBF1 had a predominantly nuclear localization in hyperplastic squamous epithelium, and nuclear ATBF1 dramatically decreased in invasive tumors. Conversely, cytoplasmic ATBF1 levels progressively increased from dysplasia to invasive tumors. Cytoplasmic ATBF1 levels were significantly inversely correlated with overall survival and disease free survival. Similar expression patterns and subcellular localization of ATBF1 were observed in HNSCC cell lines. In order to better define the role of subcellular localization of ATBF1, we identified and mutated its nuclear localization signal (NLS). Mutation of the NLS converted the inhibitory effect of ATBF1 on cell growth to growth-promoting. Conclusions: Aberrant cytoplasmic localization of ATBF1 is significantly associated progression of HNSCC, and cytoplasmic ATBF1 may be a potential biomarker for its early detection. Our results suggest that nuclear ATBF1 functions as a tumor suppressor in head and neck squamous epithelial cells and that this tumor suppressor effect is sequestered by cytoplasmic localization during HNSCC progression. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 4004. doi:10.1158/1538-7445.AM2011-4004