Songyang Liu
Jilin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Songyang Liu.
Tumor Biology | 2015
Wei Zhang; Kai Liu; Songyang Liu; Bai Ji; Yingchao Wang; Yahui Liu
MicroRNAs (miRNAs) are a class of small non-coding RNAs and have critical roles in tumorigenesis and metastasis. A growing body of evidence showed that microRNA-133a (miR-133a) was downregulated and played tumor suppressor roles in gastric, colorectal, bladder, and lung cancer. However, the role and underlying molecular mechanism of miR-133a in hepatocellular carcinoma (HCC) remain unclear. In this study, we analyzed the expression of miR-133a in HCC tissues and HCC cell lines. We find that miR-133a was downregulated in HCC tissues and cell lines and that miR-133a expression negatively correlated with tumor differentiation (P < 0.01), TNM stage (P < 0.01), and lymph node metastasis (P < 0.01). Then, functional studies demonstrate that restoration of miR-133a in HepG2 cells significantly suppressed proliferation, colony formation, migration, and invasion, induced cell cycle arrest at G0/G1 stage and cell apoptosis in vitro, and decreased tumor size and weight in a nude mouse HepG2 xenograft model. Using bioinformatics method and dual luciferase assays identified insulin-like growth factor 1 receptor (IGF-1R) as a direct target of miR-133a in HCC cells. Furthermore, overexpression of miR-133a inhibited activation AKT and ERK signal pathway, which contributed to suppression of HCC cell growth. These findings suggest that miR-133a may act as a tumor suppressor and inhibited survival of HCC cells by targeting IGF-1R.
International Journal of Oncology | 2014
Kai Liu; Songyang Liu; Wei Zhang; Bai Ji; Yingchao Wang; Yahui Liu
The miR‑222 cluster has been demonstrated to function as oncomiR in human hepatocellular carcinoma (HCC). miR‑222 confers chemotherapy drug resistance in various cancers, including HCC. However, the effects and mechanisms by which miR‑222 regulates liver tumorigenicity and confers sorafenib (SOR) resistance remain unclear. Here we first investigated the miR‑222 effect on proliferation, cell cycle, apoptosis, migration and invasion of HCC. Our results demonstrated that miRNA inhibitors specially targeting miR‑222 significantly suppressed cellular proliferation, migration, invasion and G1/S transition of the cell cycle, and induced cell apoptosis in HepG2 cells. In addition, we investigated whether miR‑222 confers SOR resistance in HepG2 cells to explore it roles in acquisition of drug resistance. The results showed that miR‑222 inhibitors induced sensitivity to the antitumor effect of sorafenib in human HepG2 cells. Importantly, our study also showed that miR‑222 could regulate the expression of phosphorylation PI3K and AKT, which might contribute to miR‑222 conferred SOR resistance in HepG2 cells. In conclusion, this study demonstrates that miR‑222 can promote cell proliferation, migration and invasion, and decrease cell apoptosis, as well as enhance the resistance of HCC cells to sorafenib miR‑222 through activating the PI3K/AKT signaling pathway.
Journal of International Medical Research | 2014
Wei Zhang; Songyang Liu; Kuai Liu; Yingchao Wang; Bai Ji; Xuechun Zhang; Yahui Liu
Objective A disintegrin and metalloprotease (ADAM)10 has been implicated in the progression of various solid tumours. Little is known, however, about its role in hepatocellular carcinoma (HCC). The aim of the present study was to evaluate the protein and transcript level expression of ADAM10 in HCC patients. Methods Samples of HCC and adjacent noncancerous liver tissue were taken during liver resection surgery. Immunostaining was used to measure ADAM10 protein expression levels and quantitative reverse– transcription polymerase chain reaction was used to measure ADAM10 mRNA expression levels. Levels of ADAM10 were compared, and a survival analysis undertaken. Results In total, 98 HCC patient samples were studied. There were significant associations between protein levels of ADAM10 and tumour grade, amount of tumour differentiation, tumour size and the presence of metastasis. Furthermore, ADAM10 protein expression was significantly associated with shortened patient survival. Conclusions ADAM10 is strongly expressed in a large proportion of HCC cases, which is in agreement with findings in other tumour entities. Expression of ADAM10 may serve as a useful molecular marker for HCC.
Molecular Medicine Reports | 2015
Songyang Liu; Wei Zhang; Kai Liu; Bai Ji; Guangyi Wang
A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein associated with metastasis in a number of types of cancer. Little is known, however, regarding the role of ADAM10 in hepatocellular carcinoma (HCC). The aim of the present study was to evaluate whether downregulation of ADAM10 effects HCC cell proliferation, cell cycle, cell migration and cell invasion. A recombinant small hairpin RNA expression vector carrying ADAM10 was constructed and then transfected into the HepG2 human HCC cell line. In vitro cell proliferation, cell cycle, cell migration and cell invasion, and in vivo tumor growth were determined following the downregulation of ADAM10 by RNA interference. The results revealed that downregulation of ADAM10 expression in HepG2 tumor cells using the RNA silencing approach significantly suppressed cell proliferation, cell migration and cell invasion in vitro, and tumor growth in vivo. Furthermore, ADAM10 silencing was able to significantly reduce constitutive phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt, which implies that ADAM10 is, at least partially, involved in the activation of the PI3K/Akt signaling pathway. These results suggest that ADAM10 is important in regulating the proliferation and metastasis of HCC. Thus, ADAM10 is a promising therapeutic target for the prevention of tumor metastases in HCC.
International Journal of Medical Sciences | 2014
Kai Liu; Bai Ji; Wei Zhang; Songyang Liu; Yingchao Wang; Yahui Liu
Objective: This retrospective study compared the advantages and disadvantages of iodine-125 (125I) seed implantation and pancreaticoduodenectomy (PD) in the treatment of pancreatic cancer. Methods: Patients with diagnosed pancreatic cancer who were treated with 125125I seed implantation (30 patients) or PD (30 patients) in our hospital were evaluated for operative time, bleeding, liver function, time to first bowel movement and normal diet, survival, and medical costs. Results: Compared with patients who underwent PD, those given 125I seed implantation had significantly shorter operative time, less bleeding, higher albumin, shorter periods to bowel movement and normal diet, lower risk of complications, and lower medical costs (P < 0.001, each). The difference of bilirubin level, time to feeding, and median survival were not significant statistically between two treatment grouops. Conclusion: For pancreatic cancer patients for whom PD is not appropriate or who refuse PD, 125I seed implantation is a good option.
Oncology Reports | 2014
Songyang Liu; Wei Zhang; Kai Liu; Yingchao Wang; Bai Ji; Yahui Liu
A disintegrin and metalloproteinase 10 (ADAM10) has been demonstrated to correlate with hepatocellular carcinoma (HCC) grade and clinical outcome and its potential as a target for HCC therapy has been established. Gene associated with retinoid-interferon-induced mortality 19 (GRIM-19), a signal transducer and activator of transcription 3 (Stat3)-inhibitory protein, was identified as a potential tumor suppressor associated with growth inhibition and cell apoptosis. In the present study, we investigated whether a combined treatment with ADAM10-specific siRNA and GRIM19 gene could have an enhanced anticancer effectiveness on HCC in vitro and in vivo. We developed a dual expression plasmid that co-expressed ADAM10-specific siRNA and GRIM19, to evaluate its effects on HCC growth. Our results showed that simultaneous expression of ADAM10-specific siRNA and GRIM19 (pSi-ADAM10-GRIM19) in HepG2 cancer cells significantly inhibited the proliferation, migration and invasion, and induced cell apoptosis in vitro, and it also suppressed tumor growth in a nude mouse model when compared to the controls, either ADAM10-specific siRNA or GRIM-19 alone. In summary, our data demonstrated that a combined strategy of co-expressed ADAM10-specific siRNA and GRIM19 synergistically and more effectively suppressed HCC tumor growth, and has therapeutic potential for the treatment of HCC.
Oncology Reports | 2015
Kai Liu; Songyang Liu; Wei Zhang; Baoxing Jia; Ludong Tan; Zhe Jin; Yahui Liu
American Journal of Translational Research | 2016
Yahui Liu; Wei Zhang; Kai Liu; Songyang Liu; Bai Ji; Yingchao Wang
Oncology Reports | 2014
Wei Zhang; Songyang Liu; Kai Liu; Bai Ji; Yingchao Wang; Yahui Liu
American Journal of Translational Research | 2016
Songyang Liu; Kai Liu; Wei Zhang; Yingchao Wang; Zhe Jin; Baoxing Jia; Yahui Liu