Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Songying Ouyang is active.

Publication


Featured researches published by Songying Ouyang.


Nature Immunology | 2012

The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response

Kislay Parvatiyar; Zhiqiang Zhang; Rosane M. B. Teles; Songying Ouyang; Yan Jiang; Shankar S. Iyer; Shivam A. Zaver; Mirjam Schenk; Shang Zeng; Wenwan Zhong; Zhi-Jie Liu; Robert L. Modlin; Yong-Jun Liu; Genhong Cheng

The induction of type I interferons by the bacterial secondary messengers cyclic di-GMP (c-di-GMP) or cyclic di-AMP (c-di-AMP) is dependent on a signaling axis that involves the adaptor STING, the kinase TBK1 and the transcription factor IRF3. Here we identified the heliase DDX41 as a pattern-recognition receptor (PRR) that sensed both c-di-GMP and c-di-AMP. DDX41 specifically and directly interacted with c-di-GMP. Knockdown of DDX41 via short hairpin RNA in mouse or human cells inhibited the induction of genes encoding molecules involved in the innate immune response and resulted in defective activation of STING, TBK1 and IRF3 in response to c-di-GMP or c-di-AMP. Our results suggest a mechanism whereby c-di-GMP and c-di-AMP are detected by DDX41, which forms a complex with STING to signal to TBK1-IRF3 and activate the interferon response.


The EMBO Journal | 2006

hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37

Xiao-Bo Qiu; Songying Ouyang; Chao-Jun Li; Shiying Miao; Linfang Wang; Alfred L. Goldberg

The 26S proteasome catalyzes the degradation of most proteins in mammalian cells. To better define its composition and associated regulatory proteins, we developed affinity methods to rapidly purify 26S proteasomes from mammalian cells. By this approach, we discovered a novel 46‐kDa (407 residues) subunit of its 19S regulatory complex (previously termed ADRM1 or GP110). As its N‐terminal half can be incorporated into the 26S proteasome and is homologous to Rpn13, a 156‐residue subunit of the 19S complex in budding yeast, we renamed it human Rpn13 (hRpn13). The C‐terminal half of hRpn13 binds directly to the proteasome‐associated deubiquitinating enzyme, UCH37, and enhances its isopeptidase activity. Knockdown of hRpn13 in 293T cells increases the cellular levels of ubiquitin conjugates and decreases the degradation of short‐lived proteins. Surprisingly, an overproduction of hRpn13 also reduced their degradation. Furthermore, transfection of the C‐terminal half of hRpn13 slows proteolysis and induces cell death, probably by acting as a dominant‐negative form. Thus in human 26S proteasomes, hRpn13 appears to be important for the binding of UCH37 to the 19S complex and for efficient proteolysis.


Immunity | 2014

NLRC3, a Member of the NLR Family of Proteins, Is a Negative Regulator of Innate Immune Signaling Induced by the DNA Sensor STING

Lu Zhang; Jinyao Mo; Karen V. Swanson; Haitao Wen; Alex Petrucelli; Sean M. Gregory; Monika Schneider; Yan Jiang; Katherine A. Fitzgerald; Songying Ouyang; Zhi-Jie Liu; Blossom Damania; Hong-Bing Shu; Joseph A. Duncan; Jenny P.-Y. Ting

Stimulator of interferon genes (STING, also named MITA, MYPS, or ERIS) is an intracellular DNA sensor that induces type I interferon through its interaction with TANK-binding kinase 1 (TBK1). Here we found that the nucleotide-binding, leucine-rich-repeat-containing protein, NLRC3, reduced STING-dependent innate immune activation in response to cytosolic DNA, cyclic di-GMP (c-di-GMP), and DNA viruses. NLRC3 associated with both STING and TBK1 and impeded STING-TBK1 interaction and downstream type I interferon production. By using purified recombinant proteins, we found NLRC3 to interact directly with STING. Furthermore, NLRC3 prevented proper trafficking of STING to perinuclear and punctated region, known to be important for its activation. In animals, herpes simplex virus 1 (HSV-1)-infected Nlrc3(-/-) mice exhibited enhanced innate immunity and reduced morbidity and viral load. This demonstrates the intersection of two key pathways of innate immune regulation, NLR and STING, to fine tune host response to intracellular DNA, DNA virus, and c-di-GMP.


Cell Host & Microbe | 2016

From Mosquitos to Humans: Genetic Evolution of Zika Virus

Lulan Wang; Stephanie G. Valderramos; Aiping Wu; Songying Ouyang; Chunfeng Li; Patrícia Brasil; Myrna C. Bonaldo; Thomas D. Coates; Karin Nielsen-Saines; Taijiao Jiang; Roghiyh Aliyari; Genhong Cheng

Initially isolated in 1947, Zika virus (ZIKV) has recently emerged as a significant public health concern. Sequence analysis of all 41 known ZIKV RNA open reading frames to date indicates that ZIKV has undergone significant changes in both protein and nucleotide sequences during the past half century.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structure of the Leanyer orthobunyavirus nucleoprotein–RNA complex reveals unique architecture for RNA encapsidation

Fengfeng Niu; Neil Shaw; Yao E. Wang; Lianying Jiao; Wei Ding; Xiaomin Li; Ping Zhu; Halmurat Upur; Songying Ouyang; Genhong Cheng; Zhijie Liu

Negative-stranded RNA viruses cover their genome with nucleoprotein (N) to protect it from the human innate immune system. Abrogation of the function of N offers a unique opportunity to combat the spread of the viruses. Here, we describe a unique fold of N from Leanyer virus (LEAV, Orthobunyavirus genus, Bunyaviridae family) in complex with single-stranded RNA refined to 2.78 Å resolution as well as a 2.68 Å resolution structure of LEAV N–ssDNA complex. LEAV N is made up of an N- and a C-terminal lobe, with the RNA binding site located at the junction of these lobes. The LEAV N tetramer binds a 44-nucleotide-long single-stranded RNA chain. Hence, oligomerization of N is essential for encapsidation of the entire genome and is accomplished by using extensions at the N and C terminus. Molecular details of the oligomerization of N are illustrated in the structure where a circular ring-like tertiary assembly of a tetramer of LEAV N is observed tethering the RNA in a positively charged cavity running along the inner edge. Hydrogen bonds between N and the C2 hydroxyl group of ribose sugar explain the specificity of LEAV N for RNA over DNA. In addition, base-specific hydrogen bonds suggest that some regions of RNA bind N more tightly than others. Hinge movements around F20 and V125 assist in the reversal of capsidation during transcription and replication of the virus. Electron microscopic images of the ribonucleoprotein complexes of LEAV N reveal a filamentous assembly similar to those found in phleboviruses.


Journal of Virology | 2013

Structure of Severe Fever with Thrombocytopenia Syndrome Virus Nucleocapsid Protein in Complex with Suramin Reveals Therapeutic Potential

Lianying Jiao; Songying Ouyang; Mifang Liang; Fengfeng Niu; Neil Shaw; Wei Wu; Wei Ding; Cong Jin; Yao Peng; Yanping Zhu; Fushun Zhang; Tao Wang; Chuan Li; Xiaobing Zuo; Chi Hao Luan; Dexin Li; Zhi-Jie Liu

ABSTRACT Severe fever with thrombocytopenia syndrome is an emerging infectious disease caused by a novel bunyavirus (SFTSV). Lack of vaccines and inadequate therapeutic treatments have made the spread of the virus a global concern. Viral nucleocapsid protein (N) is essential for its transcription and replication. Here, we present the crystal structures of N from SFTSV and its homologs from Buenaventura (BUE) and Granada (GRA) viruses. The structures reveal that phleboviral N folds into a compact core domain and an extended N-terminal arm that mediates oligomerization, such as tetramer, pentamer, and hexamer of N assemblies. Structural superimposition indicates that phleboviral N adopts a conserved architecture and uses a similar RNA encapsidation strategy as that of RVFV-N. The RNA binding cavity runs along the inner edge of the ring-like assembly. A triple mutant of SFTSV-N, R64D/K67D/K74D, almost lost its ability to bind RNA in vitro, is deficient in its ability to transcribe and replicate. Structural studies of the mutant reveal that both alterations in quaternary assembly and the charge distribution contribute to the loss of RNA binding. In the screening of inhibitors Suramin was identified to bind phleboviral N specifically. The complex crystal structure of SFTSV-N with Suramin was refined to a 2.30-Å resolution. Suramin was found sitting in the putative RNA binding cavity of SFTSV-N. The inhibitory effect of Suramin on SFTSV replication was confirmed in Vero cells. Therefore, a common Suramin-based therapeutic approach targeting SFTSV-N and its homologs could be developed for containing phleboviral outbreaks.


Cell Research | 2014

Structural analysis of asparaginyl endopeptidase reveals the activation mechanism and a reversible intermediate maturation stage.

Lixia Zhao; Tian Hua; Christopher S. Crowley; Heng Ru; Xiangmin Ni; Neil Shaw; Lianying Jiao; Wei Ding; Lu Qu; Li-Wei Hung; Wei Huang; Lei Liu; Keqiang Ye; Songying Ouyang; Genhong Cheng; Zhi-Jie Liu

Asparaginyl endopeptidase (AEP) is an endo/lysosomal cysteine endopeptidase with a preference for an asparagine residue at the P1 site and plays an important role in the maturation of toll-like receptors 3/7/9. AEP is known to undergo autoproteolytic maturation at acidic pH for catalytic activation. Here, we describe crystal structures of the AEP proenzyme and the mature forms of AEP. Structural comparisons between AEP and caspases revealed similarities in the composition of key residues and in the catalytic mechanism. Mutagenesis studies identified N44, R46, H150, E189, C191, S217/S218 and D233 as residues that are essential for the cleavage of the peptide substrate. During maturation, autoproteolytic cleavage of AEPs cap domain opens up access to the active site on the core domain. Unexpectedly, an intermediate autoproteolytic maturation stage was discovered at approximately pH 4.5 in which the partially activated AEP could be reversed back to its proenzyme form. This unique feature was confirmed by the crystal structure of AEPpH4.5 (AEP was matured at pH 4.5 and crystallized at pH 8.5), in which the broken peptide bonds were religated and the structure was transformed back to its proenzyme form. Additionally, the AEP inhibitor cystatin C could be digested by the fully activated AEP, but could not be digested by activated cathepsins. Thus, we demonstrate for the first time that cystatins may regulate the activity of AEP through substrate competition for the active site.


PLOS Pathogens | 2014

Structural and Biochemical Characterization Reveals LysGH15 as an Unprecedented "EF-Hand-Like" Calcium-Binding Phage Lysin

Jingmin Gu; Yingang Feng; Xin Feng; Changjiang Sun; Liancheng Lei; Wei Ding; Fengfeng Niu; Lianying Jiao; Mei Yang; Yue Li; Xiaohe Liu; Jun Song; Ziyin Cui; Dong Han; Chongtao Du; Yongjun Yang; Songying Ouyang; Zhi-Jie Liu; Wenyu Han

The lysin LysGH15, which is derived from the staphylococcal phage GH15, demonstrates a wide lytic spectrum and strong lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we find that the lytic activity of the full-length LysGH15 and its CHAP domain is dependent on calcium ions. To elucidate the molecular mechanism, the structures of three individual domains of LysGH15 were determined. Unexpectedly, the crystal structure of the LysGH15 CHAP domain reveals an “EF-hand-like” calcium-binding site near the Cys-His-Glu-Asn quartet active site groove. To date, the calcium-binding site in the LysGH15 CHAP domain is unique among homologous proteins, and it represents the first reported calcium-binding site in the CHAP family. More importantly, the calcium ion plays an important role as a switch that modulates the CHAP domain between the active and inactive states. Structure-guided mutagenesis of the amidase-2 domain reveals that both the zinc ion and E282 are required in catalysis and enable us to propose a catalytic mechanism. Nuclear magnetic resonance (NMR) spectroscopy and titration-guided mutagenesis identify residues (e.g., N404, Y406, G407, and T408) in the SH3b domain that are involved in the interactions with the substrate. To the best of our knowledge, our results constitute the first structural information on the biochemical features of a staphylococcal phage lysin and represent a pivotal step forward in understanding this type of lysin.


Proteins | 2014

Structural and functional analyses of human tryptophan 2,3-dioxygenase.

Bing Meng; Dong Wu; Jianhua Gu; Songying Ouyang; Wei Ding; Zhi-Jie Liu

Tryptophan 2,3‐dioxygenase (TDO), one of the two key enzymes in the kynurenine pathway, catalyzes the indole ring cleavage at the C2‐C3 bond of l‐tryptophan. This is a rate‐limiting step in the regulation of tryptophan concentration in vivo, and is thus important in drug discovery for cancer and immune diseases. Here, we report the crystal structure of human TDO (hTDO) without the heme cofactor to 2.90 Å resolution. The overall fold and the tertiary assembly of hTDO into a tetramer, as well as the active site architecture, are well conserved and similar to the structures of known orthologues. Kinetic and mutational studies confirmed that eight residues play critical roles in l‐tryptophan oxidation. Proteins 2014; 82:3210–3216.


Journal of Cell Science | 2007

YWK-II protein as a novel Go-coupled receptor for Müllerian inhibiting substance in cell survival

Xueqian Yin; Songying Ouyang; Wenming Xu; Xiaopeng Zhang; Kin Lam Fok; Hau Yan Wong; Jiaping Zhang; Xiao-Bo Qiu; Shiying Miao; Hsiao Chang Chan; Linfang Wang

Müllerian inhibiting substance (MIS) has recently been implicated in multiple cellular functions including promotion of cell survival, but the receptor(s) and signaling pathways involved remain elusive. We have investigated the possibility of YWK-II protein, previously shown to interact physically with MIS and Go protein, being a receptor mediating the cell survival effect of MIS. In YWK-II-overexpressing CHO cells, MIS activates the Go-coupled ERK1/2 signaling pathway and promotes cell survival with altered levels of p53 and caspase-3. YWK-II antibody is found to interfere with the ability of MIS to promote viability of mouse sperm and affect MIS-activated ERK1/2 phosphorylation. In vivo studies involving injection of YWK-II antibody into the seminiferous tubule of the mouse testis, where MIS is known to be produced, show significant reduction in the sperm count with accumulation of p53 and cleaved caspase-3 in testicular nuclei. Taken together, the present study has demonstrated a new Go-coupled receptor for MIS in mediating ERK1/2 activation leading to anti-apoptotic activity or cell survival.

Collaboration


Dive into the Songying Ouyang's collaboration.

Top Co-Authors

Avatar

Zhi-Jie Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Genhong Cheng

University of California

View shared research outputs
Top Co-Authors

Avatar

Neil Shaw

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yanping Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fengfeng Niu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar

Lianying Jiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weicheng Qiu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhijie Liu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge