Songyot Anuchapreeda
Chiang Mai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Songyot Anuchapreeda.
Biochemical Pharmacology | 2002
Songyot Anuchapreeda; Pranee Leechanachai; Melissa M. Smith; Suresh V. Ambudkar; Pornngarm Limtrakul
Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in the tumor cells of a patient, resulting from enhanced drug efflux. It is often related to the overexpression of P-glycoprotein (Pgp) on the surface of tumor cells, thereby reducing drug cytotoxicity. In this study, curcumin was tested for its potential ability to modulate the expression and function of Pgp in the multidrug-resistant human cervical carcinoma cell line KB-V1. Western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR) showed that treatment with 1, 5, and 10 microM curcumin for up to 72hr was able to significantly lower Pgp expression in KB-V1 cells. Curcumin (1-10 microM) decreased Pgp expression in a concentration-dependent manner and was also found to have the same effect on MDR1 mRNA levels. The effect of curcumin on Pgp function was demonstrated by rhodamine 123 (Rh123) accumulation and efflux in Pgp-expressing KB-V1 cells. Curcumin increased Rh123 accumulation in a concentration-dependent manner (1-55 microM) and inhibited the efflux of Rh123 from these cells, but did not affect the efflux of Rh123 from the wild-type drug-sensitive KB-3-1 cells. Treatment of drug-resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with an increased intracellular accumulation of Rh123. In addition, curcumin inhibited verapamil-stimulated ATPase activity and the photoaffinity labeling of Pgp with the prazosin analog [125I]iodoarylazidoprazosin in a concentration-dependent manner, demonstrating that curcumin interacts directly with the transporter. Thus, curcumin seems to be able to modulate the in vitro expression and function of Pgp in multidrug-resistant human KB-V1 cells. In summary, this study describes the duel modulation of MDR1 expression and Pgp function by the phytochemical curcumin, which may be an attractive new agent for the chemosensitization of cancer cells.
BMC Cancer | 2004
Pornngarm Limtrakul; Songyot Anuchapreeda; Duang Buddhasukh
BackgroundMultidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patients tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells.MethodsIn this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR.ResultsWestern blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures.ConclusionThese results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents.
BMC Cancer | 2001
Pornngarm Limtrakul; Songyot Anuchapreeda; Suwiwek Lipigorngoson; Floyd W.Dunn
BackgroundWe investigated the chemopreventive action of dietary curcumin on 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12,0-tetradecanoylphorbol-13-acetate (TPA)-promoted skin tumor formation in Swiss albino mice. Curcumin, a yellow coloring matter isolated from roots of Curcuma longa Linn, is a phenolic compound possessing antioxidant, free radical scavenger, and antiinflammatory properties. It has been shown by previously reported work that TPA-induced skin tumors were inhibited by topical application of curcumin, and curcumin has been shown to inhibit a variety of biological activities of TPA. Topical application of curcumin was reported to inhibit TPA-induced c-fos, c-jun and c-myc gene expression in mouse skin. This paper reports the effects of orally administered curcumin, which was consumed as a dietary component at concentrations of 0.2 % or 1 %, in ad libitum feeding.ResultsAnimals in which tumors had been initiated with DMBA and promoted with TPA experienced significantly fewer tumors and less tumor volume if they ingested either 0.2% or 1% curcumin diets. Also, the dietary consumption of curcumin resulted in a significantly decreased expression of ras and fos proto-oncogenes in the tumorous skin, as measured by enhanced chemiluminesence Western blotting detection system (Amersham).ConclusionsWhereas earlier work demonstrated that topical application of curcumin to mouse skin inhibited TPA-induced expression of c-fos, c-jun and c-myc oncogenes, our results are the first to show that orally consumed curcumin significantly inhibited DMBA- and TPA-induced ras and fos gene expression in mouse skin.
Archives of Pharmacal Research | 2006
Songyot Anuchapreeda; Pattra Thanarattanakorn; Somjai Sittipreechacharn; Singkome Tima; Prasit Chanarat; Pornngarm Limtrakul
When patients with cancers are treated with chemotherapeutic agents a long time, some of the cancer cells develop the multidrug resistance (MDR) phenotype. MDR cancer cells are characterized by the overexpression of multidrug resistance1 (MDR1) gene which encodes P-glycoprotein (Pgp), a surface protein of tumor cells that functions to produce an excessive efflux and thereby an insufficient intracellular concentration of chemotherapeutic agents. A variety of studies have sought potent MDR modulators to decreaseMDR1 gene expression in cancer cells. Our previous study has shown that curcumin exhibits characteristics of a MDR modulator in KB-V1 multidrug-resistant cells. The aim of this study was to further investigate the effect of curcumin onMDR1 gene expression in patient leukemic cells. The leukemic cells were collected from 78 childhood leukemia patients admitted at maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand, in the period from July 2003 to February 2005. There were 61 cases of acute lymphoblastic leukemia (ALL), 14 cases of acute myeloblastic leukemia (AML), and 3 cases of chronic myelocytic leukemia (CML). There were 47 males and 31 females ranging from 1 to 15 years old. Bone marrows were collected. The leukemic cells were separated and cultured in the presence or absence of 10 μM curcumin for 48 hours. MDR1 mRNA levels were determined by RT-PCR. It was found that curcumin reducedMDR1 gene expression in the cells from 33 patients (42%). Curcumin affected theMDR1 gene expression in 5 of 11 relapsed cases (45%), 10 of 26 cases of drug maintenance (38%), 7 of 18 cases of completed treatment (39%), and 11 of 23 cases of new patients (48%). The expression levels ofMDR1 gene in leukemic patient cells as compared to that of KB-V1 cells were classified as low level (1–20%) in 5 of 20 cases (25%), medium level (21–60%) in 14 of 32 cases (44%), and high level (61–100%) in 14 of 20 cases (70%). In summary, curcumin decreased MDR1 mRNA level in patient leukemic cells, especially in high level ofMDR1 gene groups. Thus, curcumin treatment may provide a lead for clinical treatment of leukemia patients in the future.
Journal of Nanotechnology | 2012
Songyot Anuchapreeda; Yoshinobu Fukumori; Siriporn Okonogi; Hideki Ichikawa
The aim of this study was to develop a new formulation of a curcumin lipid nanoemulsion having the smallest particle size, the highest loading, and a good physical stability for cancer chemotherapy. Curcumin lipid nanoemulsions were prepared by a modified thin-film hydration method followed by sonication. Soybean oil, hydrogenated L-α-phosphatidylcholine from egg yolk, and cosurfactants were used to formulate the emulsions. The resultant nanoemulsions showed mean particle diameter of 47–55 nm, could incorporate 23–28 mg curcumin per 30 mL, and were stable in particle size for 60 days at 4°C. The cytotoxicity studies of curucumin solution and curcumin-loaded nanoemulsion using B16F10 and leukemic cell lines showed IC50 values ranging from 3.5 to 30.1 and 22.2 to 53.7 μM, respectively. These results demonstrated the successful incorporation of curcumin into lipid nanoemulsion particles with small particle size, high loading capacity, good physical stability, and preserved cytotoxicity.
Food and Chemical Toxicology | 2010
Ruttiros Khonkarn; Siriporn Okonogi; Chadarat Ampasavate; Songyot Anuchapreeda
The aim of this study was to evaluate antioxidant activity and cytotoxicity against human cell lines of fruit peel extracts from rambutan, mangosteen and coconut. The highest antioxidant activity was found from rambutan peel crude extract where the highest radical scavenging capacity via ABTS assay was from its ethyl acetate fraction with a TEAC value of 23.0mM/mg and the highest ferric ion reduction activity via FRAP assay was from its methanol fraction with an EC value of 20.2mM/mg. Importantly, using both assays, these fractions had a higher antioxidant activity than butylated hydroxyl toluene and vitamin E. It was shown that the ethyl acetate fraction of rambutan peel had the highest polyphenolic content with a gallic acid equivalent of 2.3mg/mL. The results indicate that the polyphenolic compounds are responsible for the observed antioxidant activity of the extracts. Interestingly, the hexane fraction of coconut peel showed a potent cytotoxic effect on KB cell line by MTT assay (IC(50)=7.7 microg/mL), and no detectable cytotoxicity toward normal cells. We concluded that the ethyl acetate fraction of rambutan peel is a promising resource for potential novel antioxidant agents whereas the hexane fraction of coconut peel may contain novel anticancer compounds.
Acta Pharmacologica Sinica | 2009
Kanokkarn Phromnoi; Supachai Yodkeeree; Songyot Anuchapreeda; Pornngarm Limtrakul
AbstractAim:Stromelysin 1 (matrix metalloproteinase 3; MMP-3) is an enzyme known to be involved in tumor invasion and metastasis. In this study, flavonoids from vegetables and fruits, such as quercetin, kaempferol, genistein, genistin, and daidzein, were tested for their ability to modulate the secretion and activity of MMP-3 in the MDA-MB-231 breast cancer cell line. In addition, we investigated the in vitro effects of flavonoids on MDA-MB-231 cell invasion.Methods:The toxic concentration range of flavonoids was evaluated using the MTT assay. The ability of MDA-MB-231 cells to invade was evaluated using a modified Boyden chamber system. The activity of MMP-3 was determined by casein zymography. The secretion of MMP-3 was evaluated using Western blotting, casein zymography and confirmed by ELISA.Results:Some putative flavonoids, ie, quercetin and kaempferol (flavonols), significantly inhibited the in vitro invasion of MDA-MB-231 cells in a concentration-dependent manner, with IC50 values of 27 and 30 μmol/L, respectively. Quercetin and kaempferol also reduced MMP-3 activity in a dose-dependent manner, with IC50 values in the range of 30 μmol/L and 45 μmol/L, respectively. None of the flavonoids had a significant effect on the secretion of MMP-3.Conclusion:These data show that the flavonols quercetin and kaempferol have higher anti-invasion potency and higher MMP-3 inhibitory activity than isoflavones genistein, genistin and daidzein. In contrast, neither flavonols nor isoflavones have any effect on MMP-3 secretion.
Archives of Pharmacal Research | 2010
Mathanaporn Boonrao; Supachai Yodkeeree; Chadarat Ampasavate; Songyot Anuchapreeda; Pornngarm Limtrakul
Matrix metalloproteinase-3 (MMP-3) is a key enzyme with important implications in the invasion and metastasis of breast cancer cells. Curcumin (Cur), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are major forms of curcuminoids found in turmeric powder with reported anticancer activity. This study focuses on the comparative effect of Cur, DMC and BDMC on the modulation of MMP-3 activity and its secretion in MDA-MB-231 breast cancer cells. MMP-3 levels were determined by casein zymography, ELISA and western blotting. Analysis of MMP-3 expression by casein zymography revealed high expression in MDA-MB-231 invasive breast carcinoma cells, but not in MCF-7 non-invasive breast cancer cells. ELISA assays showed MMP-3 levels were significantly decreased in all curcuminoid treatments. Using zymography, treatment with non-toxic doses revealed that every curcuminoid compound except Cur reduced MMP-3 levels. Moreover, the result from western blot analysis confirmed that only DMC and BDMC reduced MMP-3 secretion in MDA-MB-231 cells, but Cur did not have any effect. MMP-3 activity revealed that none of the curcuminoids showed significant effects. However, treatment of the cells with Cur, DMC and BDMC exhibited a significant inhibition of cell invasion and motility with DMC and BDMC being more potent. These results suggest that Cur, DMC, and BDMC may be used as MMP-3 inhibitors to modulate MMP-3 expression.
European Journal of Pharmaceutics and Biopharmaceutics | 2015
Ornchuma Naksuriya; Yang Shi; Cornelus F. van Nostrum; Songyot Anuchapreeda; Wim E. Hennink; Siriporn Okonogi
Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy.
Archives of Pharmacal Research | 2011
Pantiwa Iangcharoen; Wanisa Punfa; Supachai Yodkeeree; Watchara Kasinrerk; Chadarat Ampasavate; Songyot Anuchapreeda; Pornngarm Limtrakul
Targeting therapeutics to specific sites can enhance the efficacy of drugs, reduce required doses as well as unwanted side effects. In this work, using the advantages of the specific affinity of an immobilized antibody to membrane P-gp in two different nanoparticle formulations were thus developed for targeted drug delivery to multi-drug resistant cervical carcinoma (KB-V1) cells. Further, this was compared to the human drug sensitive cervical carcinoma cell line (KB-3-1) cells. The two nanoparticle preparations were: NP1, anti-P-gp conjugated with poly (DL-lactic-coglycolic acid) (PLGA) nanoparticle and polyethylene glycol (PEG); NP2, anti-P-gp conjugated to a modified poloxamer on PLGA nanoparticles. The cellular uptake capacity of nanoparticles was confirmed by fluorescent microscopy. Comparing with each counterpart core particles, there was a higher fluorescence intensity of the targeted nanoparticles in KBV1 cells compared to KB-3-1 cells suggesting that the targeted nanoparticles were internalized into KB-V1 cells to a greater extent than KB-3-1 cell. The results had confirmed the specificity and the potential of the developed targeted delivery system for overcoming multi-drug resistance induced by overexpression of P-gp on the cell membrane.