Sonia Bacca
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sonia Bacca.
Nature Physics | 2016
G. Hagen; A. Ekström; Christian Forssén; G. R. Jansen; W. Nazarewicz; T. Papenbrock; K. A. Wendt; Sonia Bacca; Nir Barnea; Boris Carlsson; C. Drischler; K. Hebeler; M. Hjorth-Jensen; M. Miorelli; G. Orlandini; A. Schwenk; J. Simonis
What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. While the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus
Physical Review Letters | 2006
Doron Gazit; Sonia Bacca; Nir Barnea; Winfried Leidemann; G. Orlandini
^{48}
Physical Review Letters | 2012
M. Brodeur; T. Brunner; C. Champagne; S. Ettenauer; M. Smith; A. Lapierre; R. Ringle; V. L. Ryjkov; Sonia Bacca; P. P. J. Delheij; Gordon W. F. Drake; D. Lunney; A. Schwenk; J. Dilling
Ca. We show that the neutron skin (difference between radii of neutron and proton distributions) is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities are currently targeted by precision measurements. Based on ab initio results for
Journal of Physics G | 2014
Sonia Bacca; Saori Pastore
^{48}
Physical Review Letters | 2013
Sonia Bacca; Nir Barnea; Winfried Leidemann; Giuseppina Orlandini
Ca, we provide a constraint on the size of a neutron star.
Physical Review Letters | 2014
A. Ekström; Gustav R. Jansen; K. Wendt; Gaute Hagen; T. Papenbrock; Sonia Bacca; Boris Carlsson; Doron Gazit
The 4He total photoabsorption cross section is calculated with the realistic nucleon-nucleon potential Argonne V18 and the three-nucleon force (3NF) Urbana IX. Final state interaction is included rigorously via the Lorentz Integral Transform method. A rather pronounced giant resonance with peak cross sections of 3 (3.2) mb is obtained with (without) 3NF. Above 50 MeV strong 3NF effects, up to 35%, are present. Good agreement with experiment is found close to threshold. A comparison in the giant resonance region is inconclusive, since present data do not show a unique picture.
Physical Review Letters | 2013
Sonia Bacca; Nir Barnea; Gaute Hagen; Giuseppina Orlandini; T. Papenbrock
The first direct mass measurement of {6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of {8}He was determined with improved precision over our previous measurement. The obtained masses are m({6}He)=6.018 885 883(57) u and m({8}He)=8.033 934 44(11) u. The {6}He value shows a deviation from the literature of 4σ. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) and 1.959(16) fm for {6}He and {8}He, respectively. We present a detailed comparison to nuclear theory for {6}He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.
Physical Review Letters | 2009
Sonia Bacca; Nir Barnea; Winfried Leidemann; Giuseppina Orlandini
Electromagnetic reactions on light nuclei are fundamental to advance our understanding of nuclear structure and dynamics. The perturbative nature of the electromagnetic probes allows to clearly connect measured cross sections with the calculated structure properties of nuclear targets. We present an overview on recent theoretical ab initio calculations of electron-scattering and photonuclear reactions involving light nuclei. We encompass both the conventional approach and the novel theoretical framework provided by chiral effective field theories. Because both strong and electromagnetic interactions are involved in the processes under study, comparison with available experimental data provides stringent constraints on both many-body nuclear Hamiltonians and electromagnetic currents. We discuss what we have learned from studies on electromagnetic observables of light nuclei, starting from the deuteron and reaching up to nuclear systems with mass number A = 16.
Physical Review C | 2012
Sonia Bacca; Nir Barnea; A. Schwenk
We present an ab initio study of the isoscalar monopole excitations of (4)He using different realistic nuclear interactions, including modern effective field theory potentials. In particular we concentrate on the transition form factor F(M) to the narrow 0(+) resonance close to threshold. F(M) exhibits a strong potential model dependence, and can serve as a kind of prism to distinguish among different nuclear force models. Compared to the measurements obtained from inelastic electron scattering off ^{4}He, one finds that the state-of-the-art theoretical transition form factors are at variance with experimental data, especially in the case of effective field theory potentials. We discuss some possible reasons for such a discrepancy, which still remains a puzzle.
European Physical Journal A | 2009
Sonia Bacca; A. Schwenk; Gaute Hagen; T. Papenbrock
We optimize chiral interactions at next-to-next-to leading order to observables in two- and three-nucleon systems and compute Gamow-Teller transitions in 14C and (22,24)O using consistent two-body currents. We compute spectra of the daughter nuclei 14N and (22,24)F via an isospin-breaking coupled-cluster technique, with several predictions. The two-body currents reduce the Ikeda sum rule, corresponding to a quenching factor q2≈0.84-0.92 of the axial-vector coupling. The half-life of 14C depends on the energy of the first excited 1+ state, the three-nucleon force, and the two-body current.