Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia Bergante is active.

Publication


Featured researches published by Sonia Bergante.


American Journal of Sports Medicine | 2013

Isolation and Characterization of 2 New Human Rotator Cuff and Long Head of Biceps Tendon Cells Possessing Stem Cell–Like Self-Renewal and Multipotential Differentiation Capacity:

Pietro Randelli; Erika Conforti; Marco Piccoli; Vincenza Ragone; Pasquale Creo; Federica Cirillo; Pamela Masuzzo; Cristina Tringali; Paolo Cabitza; Guido Tettamanti; Nicoletta Gagliano; Luigi Anastasia; Sonia Bergante; Andrea Ghiroldi

Background: Stem cell therapy is expected to offer new alternatives to the traditional therapies of rotator cuff tendon tears. In particular, resident, tissue-specific, adult stem cells seem to have a higher regenerative potential for the tissue where they reside. Hypothesis: Rotator cuff tendon and long head of the biceps tendon possess a resident stem cell population that, when properly stimulated, may be induced to proliferate, thus being potentially usable for tendon regeneration. Study Design: Controlled laboratory study. Methods: Human tendon samples from the supraspinatus and the long head of the biceps were collected during rotator cuff tendon surgeries from 26 patients, washed with phosphate-buffered saline, cut into small pieces, and digested with collagenase type I and dispase. After centrifugation, cell pellets were resuspended in appropriate culture medium and plated. Adherent cells were cultured, phenotypically characterized, and then compared with human bone marrow stromal cells (BMSCs), as an example of adult stem cells, and human dermal fibroblasts, as normal proliferating cells with no stem cell properties. Results: Two new adult stem cell populations from the supraspinatus and long head of the biceps tendons were isolated, characterized, and cultured in vitro. Cells showed adult stem cell characteristics (ie, they were self-renewing in vitro, clonogenic, and multipotent), as they could be induced to differentiate into different cell types—namely, osteoblasts, adipocytes, and skeletal muscle cells. Conclusion: This work demonstrated that human rotator cuff tendon stem cells and human long head of the biceps tendon stem cells can be isolated and possess a high regenerative potential, which is comparable with that of BMSCs. Moreover, comparative analysis of the sphingolipid pattern of isolated cells with that of BMSCs and fibroblasts revealed the possibility of using this class of lipids as new possible markers of the cell differentiation status. Clinical Relevance: Rotator cuff and long head of the biceps tendons contain a stem cell population that can proliferate in vitro and could constitute an easily accessible stem cell source to develop novel therapies for tendon regeneration.


Journal of Biological Chemistry | 2013

NEU3 sialidase is activated under hypoxia and protects skeletal muscle cells from apoptosis through the activation of the epidermal growth factor receptor signaling pathway and the hypoxia-inducible factor (HIF)-1α.

Raffaella Scaringi; Marco Piccoli; Nadia Papini; Federica Cirillo; Erika Conforti; Sonia Bergante; Cristina Tringali; Andrea Garatti; Cecilia Gelfi; Bruno Venerando; Lorenzo Menicanti; Guido Tettamanti; Luigi Anastasia

Background: NEU3 sialidase removes sialic acid from gangliosides on adjacent cells. Results: NEU3 is up-regulated upon exposure of skeletal myoblasts to hypoxic stress, and it stimulates the EGFR signaling cascade ultimately activating HIF-1α. Conclusion: NEU3 plays a physiological role in protecting myoblasts from hypoxic stress. Significance: NEU3 role in cell response to hypoxia may suggest new therapeutic approaches to ischemic diseases. NEU3 sialidase, a key enzyme in ganglioside metabolism, is activated under hypoxic conditions in cultured skeletal muscle cells (C2C12). NEU3 up-regulation stimulates the EGF receptor signaling pathway, which in turn activates the hypoxia-inducible factor (HIF-1α), resulting in a final increase of cell survival and proliferation. In the same cells, stable overexpression of sialidase NEU3 significantly enhances cell resistance to hypoxia, whereas stable silencing of the enzyme renders cells more susceptible to apoptosis. These data support the working hypothesis of a physiological role played by NEU3 sialidase in protecting cells from hypoxic stress and may suggest new directions in the development of therapeutic strategies against ischemic diseases, particularly of the cerebro-cardiovascular system.


International Journal of Food Sciences and Nutrition | 2015

Resveratrol and anti-atherogenic effects

Graziano Riccioni; Maria Alessandra Gammone; Guido Tettamanti; Sonia Bergante; Francesca Romana Pluchinotta; Nicolantonio D'Orazio

Abstract The role of inflammation and oxidative stress in atherosclerosis development has been increasingly well recognized over the past decade. Inflammation has a significant role at all stages of atherosclerosis, including initiation, progression and plaque formation. Resveratrol is a naturally occurring polyphenolic compound found in grape products, berry fruits and red wine. Its ability to behave therapeutically as a component of red wine has attracted wide attention. Accumulating evidence suggests that it is a highly pleiotropic molecule that modulates numerous targets and molecular functions. Epidemiological studies indicate that the Mediterranean diet, rich in resveratrol, is associated with a reduced risk of atherosclerosis. Resveratrol is believed to decrease circulating low-density lipoprotein cholesterol levels, reduce cardiovascular disease risk; it reduces lipid peroxidation, platelet aggregation and oxidative stress. Resveratrol is considered a safe compound, since no significant toxic effects have been demonstrated after administration of a broad range of concentrations, and an effective anti-atherogenic agent.


Journal of Lipid Research | 2014

Gangliosides as a potential new class of stem cell markers: the case of GD1a in human bone marrow mesenchymal stem cells

Sonia Bergante; Enrica Torretta; Pasquale Creo; Nadia Sessarego; Nadia Papini; Marco Piccoli; Chiara Fania; Federica Cirillo; Erika Conforti; Andrea Ghiroldi; Cristina Tringali; Bruno Venerando; Adalberto Ibatici; Cecilia Gelfi; Guido Tettamanti; Luigi Anastasia

Owing to their exposure on the cell surface and the possibility of being directly recognized with specific antibodies, glycosphingolipids have aroused great interest in the field of stem cell biology. In the search for specific markers of the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) toward osteoblasts, we studied their glycosphingolipid pattern, with particular attention to gangliosides. After lipid extraction and fractionation, gangliosides, metabolically 3H-labeled in the sphingosine moiety, were separated by high-performance TLC and chemically characterized by MALDI MS. Upon induction of osteogenic differentiation, a 3-fold increase of ganglioside GD1a was observed. Therefore, the hypothesis of GD1a involvement in hBMSCs commitment toward the osteogenic phenotype was tested by comparison of the osteogenic propensity of GD1a-highly expressing versus GD1a-low expressing hBMSCs and direct addition of GD1a in the differentiation medium. It was found that either the high expression of GD1a in hBMSCs or the addition of GD1a in the differentiation medium favored osteogenesis, providing a remarkable increase of alkaline phosphatase. It was also observed that ganglioside GD2, although detectable in hBMSCs by immunohistochemistry with an anti-GD2 antibody, could not be recognized by chemical analysis, likely reflecting a case, not uncommon, of molecular mimicry.


Electrophoresis | 2014

Application of direct HPTLC-MALDI for the qualitative and quantitative profiling of neutral and acidic glycosphingolipids: The case of NEU3 overexpressing C2C12 murine myoblasts

Enrica Torretta; Michele Vasso; Chiara Fania; Daniele Capitanio; Sonia Bergante; Marco Piccoli; Guido Tettamanti; Luigi Anastasia; Cecilia Gelfi

Glycosphingolipids (GSLs) are a class of ubiquitous lipids characterized by a wide structural repertoire and a variety of functional implications. Importantly, altered levels have been correlated with different diseases, suggesting their crucial role in health. Conventional methods for the characterization and quantification are based on high‐performance TLC (HPTLC) separation and comparison with the migration distance of standard samples or on MS. We set up and herein report the application of an ImagePrep method for glycosphingolipids qualitative and quantitative profiling through direct HPTLC‐MALDI with particular application to wild‐type and NEU3 sialidase‐overexpressing C2C12 myoblasts. Lipids were analyzed by HPTLC, coupled with MALDI‐TOF, and the resulting GSLs profiles were compared to the [3H]sphingolipids HPTLC patterns obtained after metabolic radiolabeling. GSLs detection by HPTLC‐MALDI was optimized by testing different methods for matrix delivery and by performing quantitative analyses using serial dilutions of GSLs standards. Through this approach an accurate analysis of each variant of neutral and acidic GSLs, including the detection of different fatty‐acid chain variants for each GSL, was provided and these results demonstrated that HPTLC‐MALDI is an easy and high‐throughput analytical method for GSLs profiling, suggesting its use for an early detection of markers in different diseases, including cancer and heart ischemia.


Nutrients | 2017

Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes

Rosanna Mattera; Monica Benvenuto; Maria Gabriella Giganti; Ilaria Tresoldi; Francesca Romana Pluchinotta; Sonia Bergante; Guido Tettamanti; Laura Masuelli; Vittorio Manzari; Andrea Modesti; Roberto Bei

Cardiovascular diseases are the main cause of mortality and morbidity in the world. Hypertension, ischemia/reperfusion, diabetes and anti-cancer drugs contribute to heart failure through oxidative and nitrosative stresses which cause cardiomyocytes nuclear and mitochondrial DNA damage, denaturation of intracellular proteins, lipid peroxidation and inflammation. Oxidative or nitrosative stress-mediated injury lead to cardiomyocytes apoptosis or necrosis. The reactive oxygen (ROS) and nitrogen species (RNS) concentration is dependent on their production and on the expression and activity of anti-oxidant enzymes. Polyphenols are a large group of natural compounds ubiquitously expressed in plants, and epidemiological studies have shown associations between a diet rich in polyphenols and the prevention of various ROS-mediated human diseases. Polyphenols reduce cardiomyocytes damage, necrosis, apoptosis, infarct size and improve cardiac function by decreasing oxidative stress-induced production of ROS or RNS. These effects are achieved by the ability of polyphenols to modulate the expression and activity of anti-oxidant enzymes and several signaling pathways involved in cells survival. This report reviews current knowledge on the potential anti-oxidative effects of polyphenols to control the cardiotoxicity induced by ROS and RNS stress.


Stem Cells International | 2016

Lipogems Product Treatment Increases the Proliferation Rate of Human Tendon Stem Cells without Affecting Their Stemness and Differentiation Capability

Pietro Randelli; Alessandra Menon; Vincenza Ragone; Pasquale Creo; Sonia Bergante; Filippo Randelli; Laura de Girolamo; Umberto Alfieri Montrasio; Giuseppe Banfi; Paolo Cabitza; Guido Tettamanti; Luigi Anastasia

Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs) from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient.


Journal of Cellular Biochemistry | 2012

The synthetic purine reversine selectively induces cell death of cancer cells

Marco Piccoli; Giacomo Palazzolo; Erika Conforti; Giuseppe Lamorte; Nadia Papini; Pasquale Creo; Chiara Fania; Raffaella Scaringi; Sonia Bergante; Cristina Tringali; Leda Roncoroni; Stefania Mazzoleni; Luisa Doneda; Rossella Galli; Bruno Venerando; Guido Tettamanti; Cecilia Gelfi; Luigi Anastasia

The synthetic purine reversine has been shown to possess a dual activity as it promotes the de‐differentiation of adult cells, including fibroblasts, into stem‐cell‐like progenitors, but it also induces cell growth arrest and ultimately cell death of cancer cells, suggesting its possible application as an anti‐cancer agent. Aim of this study was to investigate the mechanism underneath reversine selectivity in inducing cell death of cancer cells by a comparative analysis of its effects on several tumor cells and normal dermal fibroblasts. We found that reversine is lethal for all cancer cells studied as it induces cell endoreplication, a process that malignant cells cannot effectively oppose due to aberrations in cell cycle checkpoints. On the other hand, normal cells, like dermal fibroblasts, can control reversine activity by blocking the cell cycle, entering a reversible quiescent state. However, they can be induced to become sensitive to the molecule when key cell cycle proteins, e.g., p53, are silenced. J. Cell. Biochem. 113: 3207–3217, 2012.


Experimental Biology and Medicine | 2017

Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes:

Ignazio Barbagallo; Giovanni Li Volti; Fabio Galvano; Guido Tettamanti; Francesca Romana Pluchinotta; Sonia Bergante; Luca Vanella

Adipose tissue dysfunction represents a hallmark of diabetic patients and is a consequence of the altered homeostasis of this tissue. Mesenchymal stem cells (MSCs) and their differentiation into adipocytes contribute significantly in maintaining the mass and function of adult adipose tissue. The aim of this study was to evaluate the differentiation of MSCs from patients suffering type 2 diabetes (dASC) and how such process results in hyperplasia or rather a stop of adipocyte turnover resulting in hypertrophy of mature adipocytes. Our results showed that gene profile of all adipogenic markers is not expressed in diabetic cells after differentiation indicating that diabetic cells fail to differentiate into adipocytes. Interestingly, delta like 1, peroxisome proliferator-activated receptor alpha, and interleukin 1β were upregulated whereas Sirtuin 1 and insulin receptor substrate 1 gene expression were found downregulated in dASC compared to cells obtained from healthy subjects. Taken together our data indicate that dASC lose their ability to differentiate into mature and functional adipocytes. In conclusion, our in vitro study is the first to suggest that diabetic patients might develop obesity through a hypertrophy of existing mature adipocytes due to failure turnover of adipose tissue. Impact statement In the present manuscript, we evaluated the differentiative potential of mesenchymal stem cells (MSCs) in adipocytes obtained from healthy and diabetic patients. This finding could be of great potential interest for the field of obesity in order to exploit such results to further understand the pathophysiological processes underlying metabolic syndrome. In particular, inflammation in diabetic patients causes a dysfunction in MSCs differentiation and a decrease in adipocytes turnover leading to insulin resistance.


Molecules | 2018

Dietary Phytoestrogen Intake is Inversely Associated with Hypertension in a Cohort of Adults Living in the Mediterranean Area

Justyna Godos; Sonia Bergante; Angela Satriano; Francesca Romana Pluchinotta; Marina Marranzano

Background: Dietary polyphenols, including phytoestrogens are abundantly present in a balanced diet. Evidence for their role in preventing non-communicable diseases is emerging. Methods: We examined the association between estimated habitual intakes of dietary phytoestrogens and hypertension in a cohort study. The baseline data included 1936 men and women aged 18 years and older. Intakes of total phytoestrogens, isoflavones, and lignans were calculated from validated food frequency questionnaire. Data on the polyphenols content in foods were retrieved from the Phenol-Explorer database. Results: Individuals in the highest quartile of dietary phytoestrogens intake were less likely to be hypertensive (OR: 0.66, 95% CI: 0.44–0.98); moreover, the association showed a significant decreasing trend. Isoflavones and lignans were not associated with lower odds of hypertension; however, some individual compounds, such as biochanin A and pinoresinol showed an independent inverse association with hypertension. Conclusions: Dietary phytoestrogens are associated with lower likelihood of hypertension in adults living in the Mediterranean area. Future studies are needed to confirm the present findings (i.e., prospective cohort studies) and to better understand the mechanisms underlying such associations.

Collaboration


Dive into the Sonia Bergante's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge