Sonia Condés
Technical University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sonia Condés.
European Journal of Forest Research | 2016
Miren del Río; Hans Pretzsch; Iciar Alberdi; Kamil Bielak; Felipe Bravo; Andreas Brunner; Sonia Condés; Mark J. Ducey; Teresa Fonseca; Nikolas von Lüpke; Maciej Pach; Sanja Perić; Thomas Perot; Zahera Souidi; Peter Spathelf; Hubert Sterba; Martina Tijardović; Margarida Tomé; Patrick Vallet; Andrés Bravo-Oviedo
The growth and yield of mixed-species stands has become an important topic of research since there are certain advantages of this type of forest as regards functions and services. However, the concepts and methods used to characterize mixed stands need to be understood, as well as harmonized and standardized. In this review we have compiled a set of measures, indices, and methods at stand level to characterize the structure, dynamics, and productivity of mixed stands, and we discuss the pros and cons of their application in growth and yield studies. Parameters for the characterization of mixed stand structure such as stand density, species composition, horizontal (intermingling) and vertical tree distribution pattern, tree size distribution, and age composition are described, detailing the potential as well as the constraints of these parameters for understanding resource capture, use, and efficiency in mixed stands. Furthermore, a set of stand-level parameters was evaluated to characterize the dynamics of mixed stands, e.g. height growth and space partitioning, self- and alien-thinning, and growth partitioning among trees. The deviations and changes in the behaviour of the analysed parameters in comparison with pure stand conditions due to inter-specific interactions are of particular interest. As regards stand productivity, we reviewed site productivity indices, the growth–density relationship in mixed stands as well as methods to compare productivity in mixed versus monospecific stands. Finally, we discuss the main problems associated with the methodology such as up-scaling from tree to stand level as well as the relevance of standardized measures and methods for improving forest growth and yield research in mixed stands. The main challenges are also outlined, especially the need for qualitatively sound data.
European Journal of Forest Research | 2015
Sonia Condés; Miren del Río
Abstract Net interactions between trees vary depending on environmental conditions and other factors such as stand density, age, or between-species complementarity and/or facilitation. According to the stress gradient hypothesis, positive or facilitative interactions are more frequent in high-stress environments whereas negative or competitive interactions occur in benign environments, although recent studies highlight the influence of species composition, type of stress, ontogeny, etc. on the interaction–stress gradient pattern. The aim of this paper is to analyze whether site climatic variables are a key factor in tree interactions in mixed stands of beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.). To test how site climatic conditions modify the effect of inter-specific competition on tree basal area growth and tree mortality, growth and mortality models were fitted using monospecific and mixed sample plots located in matching site conditions selected from the Spanish National Forest Inventory in the Navarra Province. Tree competition status was broken down into four terms according to size-symmetry (size-symmetric vs. size-asymmetric) and species identity (intra-specific vs. inter-specific). The results showed that the size-symmetric inter-specific component was non-significant on beech basal area growth and had a negative effect on pine growth. The effect of size-asymmetric inter-specific competition was always non-significant, resulting in a higher basal area growth when the admixed species are of a larger size. The interaction between annual precipitation and this inter-specific competition effect was much more pronounced on beech than on pine. Inter-specific competition had a negative effect on pine growth under better climatic conditions and a positive effect at dryer sites, while beech always benefited from the presence of pine, although the benefit was greater where climatic site conditions were better. In tree mortality models, pine mortality increased with the proportion of beech, while beech mortality was lower as the proportion of pine increased. Precipitation modified the inter-specific competition effect on tree mortality although the site influence was less relevant than on tree growth. For pine mortality, the negative effect of beech admixture was stronger at lower mean annual precipitation, while in the case of beech the positive effect of pine increased at higher levels of precipitation. The influence of climate on the effect of competition, the variation in their strength depending on the mode of competition (size-symmetric or size-asymmetric), along with the inter-specific competition component, highlight the importance of considering the effect of site conditions on between-species interactions when modeling tree growth and mortality. The species-specific patterns of variation in tree interactions along climatic gradients and the differences in tree growth and mortality corroborate the need to consider the nature of stress-limiting factors and species composition and the importance of analyzing both dynamic processes simultaneously.
Annals of Forest Science | 2007
Jorge de las Heras; D. Moya; Francisco R. López-Serrano; Sonia Condés
In Spain, wildfires have increased during the last decades with Pinus halepensis forests being the most affected. Cone differentiation and the early flowering of this species in comparison to other native Spanish species, are traits considered as adaptations to postfire regeneration. The high recurrence of fires promotes a high increase in young and immature pine stands with low capability of regeneration. In this study, silvicultural treatments such as thinning and pruning were carried out 5 years after fire in eleven years old P. halepensis stands located in dry and semi-arid sites in SE Spain. The formation of male and female strobili, production of serotinous grey, mature brown and new green cones were recorded six years after treatments. Seed production and germination percentage were also tested. Results showed acceleration in cone and viable seed production in thinned plots, with some differences between sites being recorded. Serotinous cone production also increased as a result of this treatment.RésuméLes incendies forestiers sont en train d’augmenter ces dernières décennies en Espagne, et les forêts de Pinus halepensis sont les plus atteintes. Le fait qu’elles portent plusieurs types de cônes et la floraison précoce de cette espèce, par rapport aux autres espèces espagnoles, sont considérés comme des adaptations aux conditions post-incendie. La récurrence élevée d’incendies favorise un nombre croissant de jeunes pinèdes à faible potentiel de régénération. Des traitements sylvicoles tels que l’éclaircie et l’élagage ont été effectués sur deux peuplements de P. halepensis régénérés cinq ans après l’incendie (onze ans d’âge), situés dans une localité sèche et dans une autre semi-aride du sud-est de l’Espagne. La formation de strobiles masculins et féminins, la production de cônes sérotineux mûrs et récents furent enregistrées six ans après les traitements. La production de semences et le pourcentage de germination ont aussi été testés. Les résultats ont démontré une accélération de la production de cônes et de semences viables dans les clairières, bien que certaines différences aient été constatées entre les localités. La production de cônes sérotineux a augmenté à la suite de ce traitement.
European Journal of Forest Research | 2011
Míriam Piqué; Berta Obon; Sonia Condés; Santiago Saura
The Bitterlich relascope is a multiple use dendrometer widely used in forest inventory. Although it is most commonly used to estimate basal area, the relascope can also estimate other stand variables, including density and diameter distribution. However, forest stand inventories in Spain rarely use relascope plots to estimate these variables due to the belief that they lead to higher errors than fixed-radius plots due to the heterogeneity of many Mediterranean forests. This study compared the accuracy of the estimated averages of three main stand variables (basal area, stand density, and diameter class distribution) in forest stand inventories performed with relascope plots and with conventional fixed-radius circular plots, both measuring a similar number of trees (15–20). A forest stand inventory simulator (DOMO) was used (1) to generate simulated forest stands corresponding to the nine most common types in the Mediterranean region of Catalonia (NE Spain), including even-aged and uneven-aged stands, and (2) to estimate and compare the average values of these variables at the forest stand level resulting from both plot types. In general, we did not find significant accuracy differences between the inventory systems for most of the stand variables and forest types studied, as expected by established angle-count sampling theory. However, the results show that for stands with multiple strata and open structures, the Bitterlich relascope provides a more accurate estimate for basal area than for density, while the reverse occurs for fixed-radius plots.
European Journal of Forest Research | 2008
Sonia Condés; Hubert Sterba
To support forest management decisions on converting stands from even-aged to uneven-aged management, tree models are needed that can simulate both options. Therefore, an individual tree model for Pinus halepensis Mill. is compared with the respective yield table. The individual tree model is built from data of two Spanish forest inventories in this province and evaluated with published yield tables, which have been built from permanent observational plots. The individual tree model consists of a basal area increment model and a height increment model, both based on two measurements of about 4,000 trees from single species stands of Aleppo pine. The R² values of 0.362 and 0.107 for the basal area increment model and the height increment model, respectively, are within the range of other published models of this type. Comparing the model with the yield tables for different site indices, we find that our model matches the yield table well. Only in higher ages where the database for the yield table was poor, our model indicates higher basal area growth rates than the yield table.
Annals of Forest Science | 2016
Susana Barreiro; Mart Jan Schelhaas; Gerald Kändler; Clara Antón-Fernández; Antoine Colin; Jean Daniel Bontemps; Iciar Alberdi; Sonia Condés; Marius Dumitru; Angel Ferezliev; Christoph Fischer; Patrizia Gasparini; Thomas Gschwantner; Georg Kindermann; Bjarki Kjartansson; Pál Kovácsevics; Miloš Kučera; Anders Lundström; Gheorghe Marin; Gintautas Mozgeris; Thomas Nord-Larsen; Tuula Packalen; John Redmond; Sandro Sacchelli; Allan Sims; Arnór Snorrason; Nickola Stoyanov; Esther Thürig; Per Erik Wikberg
Key messageThis analysis of the tools and methods currently in use for reporting woody biomass availability in 21 European countries has shown that most countries use, or are developing, National Forest Inventory-oriented models whereas the others use standwise forest inventory--oriented methods.ContextKnowledge of realistic and sustainable wood availability in Europe is highly relevant to define climate change mitigation strategies at national and European level, to support the development of realistic targets for increased use of renewable energy sources and of industry wood. Future scenarios at European level highlight a deficit of domestic wood supply compared to wood consumption, and some European countries state they are harvesting above the increment.AimsSeveral country-level studies on wood availability have been performed for international reporting. However, it remains essential to improve the knowledge on the projection methods used across Europe to better evaluate forecasts.MethodsAnalysis was based on descriptions supplied by the national correspondentsinvolved in USEWOOD COST Action (FP1001), and further enriched with additionaldata from international reports that allowedcharacterisation of the forests in these countries for the same base year.ResultsMethods currently used for projecting wood availability were described for 21 European countries. Projection systems based on National Forest Inventory (NFI) data prevail over methods based on forest management plans. Only a few countries lack nationwide projection tools, still using tools developed for specific areas.ConclusionsA wide range of NFI-based systems for projecting wood availability exists, being under permanent improvement. The validation of projection forecasts and the inclusion of climate sensitive growth models into these tools are common aims for most countries. Cooperation among countries would result in higher efficiency when developing and improving projection tools and better comparability among them.
Environmental Monitoring and Assessment | 2010
I. Alberdi; Sonia Condés; J. Martínez-Millán
Ground vegetation (GV) is an important component from which many forest biodiversity indicators can be estimated. To formulate policies at European level, taking into account biodiversity, European National Forest Inventories (NFIs) are one of the most important sources of forest information. However, for monitoring GV, there are several definitions, data collection methods, and different possible indicators. Even though it must be considered that natural conditions in different countries form very different understory types, each one has its own cost-efficient monitoring design, and they can hardly be compared. Therefore, the development of general guidelines is a particularly complex issue. This paper is a review of data collection methods and consequently a selection of the best available methods for the set of indicators with an emphasis on GV sampling methodologies in NFIs. As a final result, recommendations on GV definitions and classifications, sampling methodologies, and indicators are formulated for NFIs. Different sampling areas are recommended for each life form (shrubs, herbs, etc.). Inventory cycles and sampling seasons (depending on the phonological stages) should be specially considered and evaluated in the results. The proposed indicators are based on composition at different levels of sampling intensity for each life form and on coverage measurements.
European Journal of Forest Research | 2017
Gerald Dirnberger; Hubert Sterba; Sonia Condés; Christian Ammer; Peter Annighöfer; Admir Avdagić; Kamil Bielak; Gediminas Brazaitis; Lluís Coll; Michael Heym; Václav Hurt; Viktor Kurylyak; Renzo Motta; Maciej Pach; Quentin Ponette; Ricardo Ruiz-Peinado; Jerzy Skrzyszewski; Vít Šrámek; Géraud de Streel; Miroslav Svoboda; Tzvetan Zlatanov; Hans Pretzsch
Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) dominate many of the European forest stands. Also, mixtures of European beech and Scots pine more or less occur over all European countries, but have been scarcely investigated. The area occupied by each species is of high relevance, especially for growth evaluation and comparison of different species in mixed and monospecific stands. Thus, we studied different methods to describe species proportions and their definition as proportion by area. 25 triplets consisting of mixed and monospecific stands were established across Europe ranging from Lithuania to Spain in northern to southern direction and from Bulgaria to Belgium in eastern to western direction. On stand level, the conclusive method for estimating the species proportion as a fraction of the stand area relates the observed density (tree number or basal area) to its potential. This stand-level estimation makes use of the potential from comparable neighboring monospecific stands or from maximum density lines derived from other data, e.g. forest inventories or permanent observations plots. At tree level, the fraction of the stand area occupied by a species can be derived from the proportions of their crown projection area or of their leaf area. The estimates of the potentials obtained from neighboring monospecific stands, especially in older stands, were poorer than those from the maximum density line depending on the Martonne aridity index. Therefore, the stand-level method in combination with the Martonne aridity index for potential densities can be highly recommended. The species’ proportions estimated with this method are best approximated by the proportions of the species’ leaf areas. In forest practice, the most commonly applied method is an ocular estimation of the proportions by crown projection area. Even though the proportions of pine were calculated here by measuring crown projection areas in the field, we found this method to underestimate the proportion by 25% compared to the stand-level approach.
Journal of Mountain Science | 2012
Alicia Ledo; Sonia Condés; Iciar Alberdi
Cloud forests are unusual and fragile habitats, being one of the least studied and least understood ecosystems. The tropical Andean dominion is considered one of the most significant places in the world as regards biological diversity, with a very high level of endemism. The biodiversity was analysed in an isolated remnant area of a tropical montane cloud forest known as the “Bosque de Neblina de Cuyas”, in the North of the Peruvian Andean range. Composition, structure and dead wood were measured or estimated. The values obtained were compared with other cloud forests. The study revealed a high level of forest biodiversity, although the level of biodiversity differs from one area to another: in the inner areas, where human pressure is almost inexistent, the biodiversity values increase. The high species richness and the low dominance among species bear testimony to this montane cloud forest as a real enclave of biodiversity.
In National Forest Inventories: Contributions to Forest Biodiversity Assessments, Vol. 20 (2011), pp. 41-97, doi:10.1007/978-94-007-0482-4_3 | 2011
Ronald E. McRoberts; Gherardo Chirici; Susanne Winter; Anna Barbati; Piermaria Corona; Marco Marchetti; Elmar Hauk; Urs-Beat Brändli; Jana Beranova; Jacques Rondeux; Christine Sanchez; Roberta Bertini; Nadia Barsoum; Iciar Alberdi Asensio; Sonia Condés; Santiago Saura; Stefan Neagu; Catherine Cluzeau; Nabila Hamza
Following selection of the 13 biodiversity variables that were evaluated as both important and feasible for assessment by NFIs and grouping them into essential features, additional information was solicited regarding the degree to which the 13 variables are currently assessed by NFIs. The objective was to evaluate the prospects for harmonized estimates of biodiversity indicators based on these variables. The prospects varied considerably depending on the particular variable and essential feature. The evaluations produced positive harmonization possibilities for forest categories and the tree height and diameter variables associated with forest structure. For forest age, possibilities were constrained by lack of common reference definitions. However, possibilities for construction of a common reference definition and bridges to compensate for the differences in estimates resulting from using national and reference definitions were deemed positive. Prospects for regeneration, ground vegetation, and naturalness were less positive because of variability in definitions, assessment methods, measurement thresholds and other factors. Thus, efforts at harmonization for these essential features were constrained to a few variables or a few countries with similar NFI features.