Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia Di Gaetano is active.

Publication


Featured researches published by Sonia Di Gaetano.


Biochemical Pharmacology | 2012

Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis

Federica Finetti; Anna Basile; Domenica Capasso; Sonia Di Gaetano; Rossella Di Stasi; Maria Pascale; Caterina Maria Turco; Marina Ziche; Lucia Morbidelli; Luca Domenico D’Andrea

Vascular endothelial growth factor (VEGF) is the main regulator of physiological and pathological angiogenesis. Low molecular weight molecules able to stimulate angiogenesis have interesting medical application for example in regenerative medicine, but at present none has reached the clinic. We reported that a VEGF mimetic helical peptide, QK, designed on the VEGF helix sequence 17-25, is able to bind and activate the VEGF receptors, producing angiogenesis. In this study we evaluate the pharmacological properties of peptide QK with the aim to propose it as a VEGF-mimetic drug to be employed in reparative angiogenesis. We show that the peptide QK is able to recapitulate all the biological activities of VEGF in vivo and on endothelial cells. In experiments evaluating sprouting from aortic ring and vessel formation in an in vivo angiogenesis model, the peptide QK showed biological effects comparable with VEGF. At endothelial level, the peptide up-regulates VEGF receptor expression, activates intracellular pathways depending on VEGFR2, and consistently it induces endothelial cell proliferation, survival and migration. When added to angiogenic factors (VEGF and/or FGF-2), QK produces an improved biological action, which resulted in reduced apoptosis and accelerated in vitro wound healing. The VEGF-like activity of the short peptide QK, characterized by lower cost of production and easier handling compared to the native glycoprotein, suggests that it is an attractive candidate to be further developed for application in therapeutic angiogenesis.


Biochimie | 2011

Molecular organization of the cullin E3 ligase adaptor KCTD11

Stefania Correale; Luciano Pirone; Lucia Di Marcotullio; Enrico De Smaele; Azzura Greco; Daniela Mazzà; Marta Moretti; Vincenzo Alterio; Luigi Vitagliano; Sonia Di Gaetano; Alberto Gulino; Emilia Pedone

The family of human proteins containing a potassium channel tetramerization domain (KCTD) includes 21 members whose function is largely unknown. Recent reports have however suggested that these proteins are implicated in very important biological processes. KCTD11/REN, the best-characterized member of the family to date, plays a crucial role in the ubiquitination of HDAC1 by acting, in complex with Cullin3, as an E3 ubiquitin ligase. By combining bioinformatics and mutagenesis analyses, here we show that the protein is expressed in two alternative variants: a short previously characterized form (sKCTD11) composed by 232 amino acids and a longer variant (lKCTD11) which contains an N-terminal extension of 39 residues. Interestingly, we demonstrate that lKCTD11 starts with a non-canonical AUU codon. Although both sKCTD11 and lKCTD11 bear a POZ/BTB domain in their N-terminal region, this domain is complete only in the long form. Indeed, sKCTD11 presents an incomplete POZ/BTB domain. Nonetheless, sKCTD11 is still able to bind Cul3, although to much lesser extent than lKCTD11, and to perform its biological activity. The heterologous expression of sKCTD11 and lKCTD11 and their individual domains in Escherichia coli yielded soluble products as fusion proteins only for the longer form. In contrast to the closely related KCTD5 which is pentameric, the characterization of both lKCTD11 and its POZ/BTB domain by gel filtration and light scattering indicates that the protein likely forms stable tetramers. In line with this result, experiments conducted in cells show that the active protein is not monomeric. Based on these findings, homology-based models were built for lKCTD11 BTB and for its complex with Cul3. These analyses indicate that a stable lKCTD11 BTB-Cul3 three-dimensional model with a 4:4 stoichiometry can be generated. Moreover, these models provide insights into the determinants of the tetramer stability and into the regions involved in lKCTD11-Cul3 recognition.


PLOS ONE | 2012

γ Sulphate PNA (PNA S): highly selective DNA binding molecule showing promising antigene activity.

Concetta Avitabile; Loredana Moggio; Gaetano Malgieri; Domenica Capasso; Sonia Di Gaetano; Michele Saviano; Carlo Pedone; Alessandra Romanelli

Peptide Nucleic Acids (PNAs), nucleic acid analogues showing high stability to enzyme degradation and strong affinity and specificity of binding toward DNA and RNA are widely investigated as tools to interfere in gene expression. Several studies have been focused on PNA analogues with modifications on the backbone and bases in the attempt to overcome solubility, uptake and aggregation issues. γ PNAs, PNA derivatives having a substituent in the γ position of the backbone show interesting properties in terms of secondary structure and affinity of binding toward complementary nucleic acids. In this paper we illustrate our results obtained on new analogues, bearing a sulphate in the γ position of the backbone, developed to be more DNA-like in terms of polarity and charge. The synthesis of monomers and oligomers is described. NMR studies on the conformational properties of monomers and studies on the secondary structure of single strands and triplexes are reported. Furthermore the hybrid stability and the effect of mismatches on the stability have also been investigated. Finally, the ability of the new analogue to work as antigene, interfering with the transcription of the ErbB2 gene on a human cell line overexpressing ErbB2 (SKBR3), assessed by FACS and qPCR, is described.


Journal of Medicinal Chemistry | 2011

RNA-Binding and Viral Reverse Transcriptase Inhibitory Activity of a Novel Cationic Diamino Acid-Based Peptide

Giovanni N. Roviello; Sonia Di Gaetano; Domenica Capasso; Simona Franco; Claudia Crescenzo; Enrico Bucci; Carlo Pedone

A novel cationic peptide based on L-lysine and L-diaminobutyric acid was prepared for the first time by solid phase synthesis. After HPLC purification and ESI MS characterization, we studied by CD and IR spectroscopy the structural features of the novel basic peptide, which is able to form a β-turn-like structure. Furthermore, its interaction with DNA and RNA was investigated by CD and UV spectroscopy, which revealed a preferential RNA-binding ability of the sequential peptide, whereas its inhibitory activity toward HIV and Moloney murine leukemia virus (MMLV) reverse transcriptase action was evaluated by semiquantitative PCR. The cationic sequential peptide was able to inhibit the reverse transcriptase activity in both cases, even if our PCR data suggested a major activity in the case of HIV-RT, probably due to the stronger cationic peptide-protein interaction evidenced by UV spectroscopy.


International Journal of Nanomedicine | 2013

gH625 is a viral derived peptide for effective delivery of intrinsically disordered proteins

Giovanni Smaldone; Annarita Falanga; Domenica Capasso; Daniela Guarnieri; Stefania Correale; Massimiliano Galdiero; Paolo A. Netti; Massimo Zollo; Stefania Galdiero; Sonia Di Gaetano; Emilia Pedone

A genetically modified recombinant gH625-c-prune was prepared through conjugation of c-prune with gH625, a peptide encompassing 625–644 residues of the glycoprotein H of herpes simplex virus 1, which has been proved to possess the ability to carry cargo molecules across cell membranes. C-prune is the C-terminal domain of h-prune, overexpressed in breast, colorectal, and gastric cancers, interacting with multiple partners, and representing an ideal target for inhibition of cancer development. Its C-terminal domain results in an intrinsically disordered domain (IDD), and the peculiar properties of gH625 render it an optimal candidate to act as a carrier for this net negatively charged molecule by comparison with the positively charged TAT. A characterization of the recombinant gH625-c-prune fusion protein was conducted by biochemical, cellular biology and confocal microscopy means in comparison with TAT-c-prune. The results showed that the gH625-c-prune exhibited the ability to cross biomembranes, opening a new scenario on the use of gH625 as a novel multifunctional carrier.


FEBS Journal | 2016

A new cryptic cationic antimicrobial peptide from human apolipoprotein E with antibacterial activity and immunomodulatory effects on human cells

Katia Pane; Valeria Sgambati; Anna Zanfardino; Giovanni Smaldone; Valeria Cafaro; Tiziana Angrisano; Emilia Pedone; Sonia Di Gaetano; Domenica Capasso; Evan F. Haney; Viviana Izzo; Mario Varcamonti; Eugenio Notomista; Robert E. W. Hancock; Alberto Di Donato; Elio Pizzo

Cationic antimicrobial peptides (AMPs) possess fast and broad‐spectrum activity against both Gram‐negative and Gram‐positive bacteria, as well as fungi. It has become increasingly evident that many AMPs, including those that derive from fragments of host proteins, are multifunctional and able to mediate various immunomodulatory functions and angiogenesis. Among these, synthetic apolipoprotein‐derived peptides are safe and well tolerated in humans and have emerged as promising candidates in the treatment of various inflammatory conditions. Here, we report the characterization of a new AMP corresponding to residues 133–150 of human apolipoprotein E. Our results show that this peptide, produced either by chemical synthesis or by recombinant techniques in Escherichia coli, possesses a broad‐spectrum antibacterial activity. As shown for several other AMPs, ApoE (133–150) is structured in the presence of TFE and of membrane‐mimicking agents, like SDS, or bacterial surface lipopolysaccharide (LPS), and an anionic polysaccharide, alginate, which mimics anionic capsular exo‐polysaccharides of several pathogenic microorganisms. Noteworthy, ApoE (133–150) is not toxic toward several human cell lines and triggers a significant innate immune response, assessed either as decreased expression levels of proinflammatory cytokines in differentiated THP‐1 monocytic cells or by the induction of chemokines released from PBMCs. This novel bioactive AMP also showed a significant anti‐inflammatory effect on human keratinocytes, suggesting its potential use as a model for designing new immunomodulatory therapeutics.


Journal of Molecular Recognition | 2013

A biophysical characterization of the folded domains of KCTD12: insights into interaction with the GABAB2 receptor

Stefania Correale; Carla Esposito; Luciano Pirone; Luigi Vitagliano; Sonia Di Gaetano; Emilia Pedone

Recent investigations have shown that members of the KCTD family play important roles in fundamental biological processes. Despite their roles, very limited information is available on their structures and molecular organization. By combining different experimental and theoretical techniques, we have here characterized the two folded domains of KCTD12, an integral component and modulator of the GABAB2 receptor. Secondary prediction methods and CD spectroscopy have shown that the N‐terminal domain KCTD12BTB assumes an α/β structure, whereas the C‐terminal domain KCTD12H1 is predominantly characterized by a β‐structure. Binding assays indicate that the two domains independently expressed show a good affinity for each other. This suggests that the overall protein is likely endowed with a rather compact structure with two interacting structured domains joint by a long disordered region. Notably, both KCTD12BTB and KCTD12H1 are tetrameric when individually expressed. This finding could modify the traditional view that ascribes only to POZ/BTB domain a specific oligomerization role. The first quantification of the affinity of KCTD12POZ/BTB for the C‐terminal region of GABAB2 shows that it falls in the low micromolar range. Interestingly, we also demonstrate that a GABAB2‐related peptide is able to bind KCTD12BTB with a very high affinity. This peptide may represent a useful tool for modulating KCTD12/GABAB2 interaction in vitro and may also constitute the starting point for the development of peptidomimetic compounds with a potential for therapeutic applications. Copyright


PLOS ONE | 2015

Cullin3 - BTB Interface: A Novel Target for Stapled Peptides

Ivan de Paola; Luciano Pirone; Maddalena Palmieri; Nicole Balasco; Luciana Esposito; Luigi Russo; Daniela Mazzà; Lucia Di Marcotullio; Sonia Di Gaetano; Gaetano Malgieri; Luigi Vitagliano; Emilia Pedone; Laura Zaccaro

Cullin3 (Cul3), a key factor of protein ubiquitination, is able to interact with dozens of different proteins containing a BTB (Bric-a-brac, Tramtrack and Broad Complex) domain. We here targeted the Cul3–BTB interface by using the intriguing approach of stabilizing the α-helical conformation of Cul3-based peptides through the “stapling” with a hydrocarbon cross-linker. In particular, by combining theoretical and experimental techniques, we designed and characterized stapled Cul3-based peptides embedding the helix 2 of the protein (residues 49–68). Intriguingly, CD and NMR experiments demonstrate that these stapled peptides were able to adopt the helical structure that the fragment assumes in the parent protein. We also show that some of these peptides were able to bind to the BTB of the tetrameric KCTD11, a substrate adaptor involved in HDAC1 degradation, with high affinity (~ 300–600 nM). Cul3-derived staple peptides are also able to bind the BTB of the pentameric KCTD5. Interestingly, the affinity of these peptides is of the same order of magnitude of that reported for the interaction of full-length Cul3 with some BTB containing proteins. Moreover, present data indicate that stapling endows these peptides with an increased serum stability. Altogether, these findings indicate that the designed stapled peptides can efficiently mimic protein-protein interactions and are potentially able to modulate fundamental biological processes involving Cul3.


PLOS ONE | 2015

Cullin 3 Recognition Is Not a Universal Property among KCTD Proteins

Giovanni Smaldone; Luciano Pirone; Nicole Balasco; Sonia Di Gaetano; Emilia Pedone; Luigi Vitagliano

Cullin 3 (Cul3) recognition by BTB domains is a key process in protein ubiquitination. Among Cul3 binders, a great attention is currently devoted to KCTD proteins, which are implicated in fundamental biological processes. On the basis of the high similarity of BTB domains of these proteins, it has been suggested that the ability to bind Cul3 could be a general property among all KCTDs. In order to gain new insights into KCTD functionality, we here evaluated and/or quantified the binding of Cul3 to the BTB of KCTD proteins, which are known to be involved either in cullin-independent (KCTD12 and KCTD15) or in cullin-mediated (KCTD6 and KCTD11) activities. Our data indicate that KCTD6BTB and KCTD11BTB bind Cul3 with high affinity forming stable complexes with 4:4 stoichiometries. Conversely, KCTD12BTB and KCTD15BTB do not interact with Cul3, despite the high level of sequence identity with the BTB domains of cullin binding KCTDs. Intriguingly, comparative sequence analyses indicate that the capability of KCTD proteins to recognize Cul3 has been lost more than once in distinct events along the evolution. Present findings also provide interesting clues on the structural determinants of Cul3-KCTD recognition. Indeed, the characterization of a chimeric variant of KCTD11 demonstrates that the swapping of α2β3 loop between KCTD11BTB and KCTD12BTB is sufficient to abolish the ability of KCTD11BTB to bind Cul3. Finally, present findings, along with previous literature data, provide a virtually complete coverage of Cul3 binding ability of the members of the entire KCTD family.


Journal of Peptide Science | 2011

Design, synthesis and characterization of a peptide able to bind proteins of the KCTD family: implications for KCTD—cullin 3 recognition†

Luciano Pirone; Stefania Correale; Ivan de Paola; Laura Zaccaro; Giuseppina De Simone; Luigi Vitagliano; Emilia Pedone; Sonia Di Gaetano

Pox virus Zinc/Bric‐à‐brac, Tramtrack and Broad (POZ/BTB) is a widespread domain detected in proteins involved in a variety of biological processes. Human genome analyses have unveiled the presence of POZ/BTB domain in a class of proteins (KCTD) whose role as important players in crucial biological processes is emerging. The development of new molecular entities able to interact with these proteins and to modulate their activity is a field of relevant interest. By using molecular modeling and literature mutagenesis analyses, we here designed and characterized a peptide that is able to interact with submicromolar affinities with two different members (KCTD11 and KCTD5) of this family. This finding suggests that the tetrameric KCTD11 and the pentameric KCTD5 are endowed with a similar cavity at the subunit–subunit interface deputed to the Cul3 binding, despite their different oligomeric states. Copyright

Collaboration


Dive into the Sonia Di Gaetano's collaboration.

Top Co-Authors

Avatar

Domenica Capasso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Emilia Pedone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luciano Pirone

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Luigi Vitagliano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Roberto Fattorusso

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Carlo Pedone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Michele Saviano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan de Paola

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge