Sonia Lacroix-Lamandé
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sonia Lacroix-Lamandé.
Infection and Immunity | 2002
Sonia Lacroix-Lamandé; Roselyne Mancassola; Muriel Naciri; Fabrice Laurent
ABSTRACT Cryptosporidium parvum is a protozoan parasite that infects intestinal epithelial cells and induces inflammation of the intestine. To better understand the inflammatory process occurring during cryptosporidiosis, we investigated in this study the kinetics of chemokine expression in the mucosa of mice by quantitative reverse transcription-PCR. Our results demonstrate that among the chemokine mRNAs studied, gamma interferon (IFN-γ)-inducible protein 10 (IP-10), monokine induced by IFN-γ (MIG), i-TAC, lymphotactin, macrophage inflammatory protein 1β (MIP-1β), and RANTES mRNAs were strongly up-regulated in infected neonate mice, which correlated with the immunofluorescence staining results showing T-cell and macrophage infiltration in the mucosa. Our in vitro data showed that intestinal epithelial cells infected by C. parvum or stimulated by the proinflammatory cytokines (IFN-γ, interleukin-1β, and tumor necrosis factor alpha) produce a pattern of chemokine secretion similar to that observed in vivo, suggesting that these cells may take part in the initial production of chemokines. In order to identify the chemokines responsible for the recruitment of the inflammatory cells leading to a protective immune response, we compared the patterns of chemokine expression in a healing neonate mouse model and a nonhealing IFN-γ knockout (GKO) mouse model of cryptosporidiosis. In the absence of IFN-γ, the chemokine response was altered for IP-10, MIG, i-TAC, RANTES, and MIP-1β mRNAs, while the three ELR C-X-C chemokine mRNAs studied (lipopolysaccharide-induced C-X-C chemokine, MIP-2α, and KC mRNAs) were strongly overexpressed. These results are consistent with the neutrophil recruitment observed in the lamina propria of GKO mice at day 9 postinfection but are not consistent with the hypothesis that these cells play an important role in the resolution of the infection. On the contrary, the altered response of chemokines responsible for the recruitment of macrophages and T cells in GKO mice suggests that these two populations may be critical in the development of a protective immune response.
The Journal of Infectious Diseases | 2006
Mathieu Barrier; Sonia Lacroix-Lamandé; Roselyne Mancassola; Gaël Auray; Nelly Bernardet; Anne-Marie Chaussé; Satoshi Uematsu; Shizuo Akira; Fabrice Laurent
BACKGROUND Neonates are particularly vulnerable to infections, in part because of the incomplete development of their immune system. Recent advances in immunostimulatory treatments based on conserved microbial components led us to assess the potential of oligodeoxynucleotides (ODNs) for decreasing the sensitivity of neonates to Cryptosporidium parvum infection. METHODS Neonate mice were treated orally or intraperitoneally (ip) with CpG ODNs or non-CpG ODNs 24 h before C. parvum infection, and parasite load and cytokine up-regulation were evaluated. RESULTS CpG ODN 1668 and non-CpG ODN 1668 administered orally, as well as CpG ODN 1668 administered ip, induced an 80%-95% decrease in intestinal parasite load 6 days after infection. Intraperitoneal and oral pretreatment with CpG ODN 1668 led to a strong initial up-regulation of cytokines and CD69 messenger RNA in the intestine and a decrease in parasite load by a Toll-like receptor 9 (TLR9)-dependent mechanism. By contrast, oral administration of non-CpG ODN 1668 decreased parasite load by a TLR9-independent mechanism. CONCLUSION The control of neonatal C. parvum infection by ip or oral administration of ODNs is feasible by 2 different mechanisms: (1) the well-known interaction involving CpG/TLR9, leading to the production of cytokines and lymphocyte activation, and (2) a new unknown mechanism that is independent of TLR9 and effective orally.
PLOS Pathogens | 2013
Louis Lantier; Sonia Lacroix-Lamandé; Laurent Potiron; Coralie Metton; Françoise Drouet; William Guesdon; Audrey Gnahoui-David; Yves Le Vern; Edith Deriaud; Aurore Fenis; Amandine Descamps; Catherine Werts; Fabrice Laurent
Cryptosporidium parvum is a zoonotic protozoan parasite found worldwide, that develops only in the gastrointestinal epithelium and causes profuse diarrhea. Using a mouse model of C. parvum infection, we demonstrated by conditional depletion of CD11c+ cells that these cells are essential for the control of the infection both in neonates and adults. Neonates are highly susceptible to C. parvum but the infection is self-limited, whereas adults are resistant unless immunocompromised. We investigated the contribution of DC to the age-dependent susceptibility to infection. We found that neonates presented a marked deficit in intestinal CD103+ DC during the first weeks of life, before weaning, due to weak production of chemokines by neonatal intestinal epithelial cells (IEC). Increasing the number of intestinal CD103+ DC in neonates by administering FLT3-L significantly reduced susceptibility to the infection. During infections in neonates, the clearance of the parasite was preceded by a rapid recruitment of CD103+ DC mediated by CXCR3-binding chemokines produced by IEC in response to IFNγ. In addition to this key role in CD103+ DC recruitment, IFNγ is known to inhibit intracellular parasite development. We demonstrated that during neonatal infection CD103+ DC produce IL-12 and IFNγ in the lamina propria and the draining lymph nodes. Thus, CD103+DC are key players in the innate immune control of C. parvum infection in the intestinal epithelium. The relative paucity of CD103+ DC in the neonatal intestine contributes to the high susceptibility to intestinal infection.
Developmental and Comparative Immunology | 2008
Isabel Tourais-Esteves; Nelly Bernardet; Sonia Lacroix-Lamandé; Stéphanie Ferret-Bernard; Fabrice Laurent
In mammals, Toll-like receptors play a critical role in initiating innate immune responses and modulating adaptive immunity, by recognizing conserved microbial molecular patterns. This study was undertaken to identify specific features of the responses to synthetic toll-like receptor (TLR) agonists in goats, for the definition of tailored immunostimulation strategies. We show here, in contrast to what has been shown in mice, that mesenteric lymph nodes (MLNs) cells and splenocytes from neonatal goats produce much higher levels of TH1-type cytokines than adults in response to various TLR agonists. IL-12 was identified as a critical cytokine for IFNgamma production by CD8(+) neonatal cells. The higher level of IL-12 production by neonatal MLN and spleen cells than by adult cells was not correlated with a higher level of TLR expression or lower levels of production of the regulatory cytokine IL-10. In neonates, two cell populations-class II(+) CD8(+) and class II(+) CD8(-) cells-produce IL-12 in response to R848 and Poly I:C, respectively. Thus, goat kids have characteristics that could be exploited to favor development of the TH1-type responses critical for the control of intracellular pathogens.
PLOS Neglected Tropical Diseases | 2014
Martine Fanton d'Andon; Nathalie Quellard; Béatrice Fernandez; Gwenn Ratet; Sonia Lacroix-Lamandé; Alain Vandewalle; Ivo G. Boneca; Jean-Michel Goujon; Catherine Werts
Background Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Rodents carry L. interrogans asymptomatically in their kidneys and excrete bacteria in the urine, contaminating the environment. Humans get infected through skin contact and develop a mild or severe leptospirosis that may lead to renal failure and fibrosis. L. interrogans provoke an interstitial nephritis, but the induction of fibrosis caused by L. interrogans has not been studied in murine models. Innate immune receptors from the TLR and NLR families have recently been shown to play a role in the development and progression of tissue fibrosis in the lung, liver and kidneys under different pathophysiological situations. We recently showed that TLR2, TLR4, and NLRP3 receptors were crucial in the defense against leptospirosis. Moreover, infection of a human cell line with L. interrogans was shown to induce TLR2-dependent production of fibronectin, a component of the extracellular matrix. Therefore, we thought to assess the presence of renal fibrosis in L. interrogans infected mice and to analyze the contribution of some innate immune pathways in this process. Methodology/principal findings Here, we characterized by immunohistochemical studies and quantitative real-time PCR, a model of Leptospira-infected C57BL/6J mice, with chronic carriage of L. interrogans inducing mild renal fibrosis. Using various strains of transgenic mice, we determined that the renal infiltrates of T cells and, unexpectedly, TLR and NLR receptors, are not required to generate Leptospira-induced renal fibrosis. We also show that the iNOS enzyme, known to play a role in Leptospira-induced interstitial nephritis, also plays a role in the induction of renal fibrosis. Conclusion/significance To our knowledge, this work provides the first experimental murine model of sustained renal fibrosis induced by a chronic bacterial infection that may be peculiar, since it does not rely on TLR or NLR receptors. This model may prove useful to test future therapeutic strategies to combat Leptospira-induced renal lesions.
PLOS ONE | 2009
Sonia Lacroix-Lamandé; Nicolas Rochereau; Roselyne Mancassola; Mathieu Barrier; Amandine Clauzon; Fabrice Laurent
Background The development of mucosal vaccines is crucial to efficiently control infectious agents for which mucosae are the primary site of entry. Major drawbacks of these protective strategies are the lack of effective mucosal adjuvant. Synthetic oligodeoxynucleotides that contain several unmethylated cytosine-guanine dinucleotide (CpG-ODN) motifs are now recognized as promising adjuvants displaying mucosal adjuvant activity through direct activation of TLR9-expressing cells. However, little is known about the efficacy of these molecules in stimulating the intestinal immune system in neonates. Methodology/Principal Findings First, newborn mice received CpG-ODN orally, and the intestinal cytokine and chemokine response was measured. We observed that oral administration of CpG-ODN induces CXC and CC chemokine responses and a cellular infiltration in the intestine of neonates as detected by immunohistochemistry. We next compared the efficiency of the oral route to intraperitoneal administration in stimulating the intestinal immune responses of both adults and neonates. Neonates were more responsive to TLR9-stimulation than adults whatever the CpG-ODN administration route. Their intestinal epithelial cells (IECs) indirectly responded to TLR9 stimulation and contributed to the CXC chemokine response, whereas other TLR9-bearing cells of the lamina-propria produced CC chemokines and Th1-type cytokines. Moreover, we showed that the intestine of adult exhibited a significantly higher level of IL10 at homeostasis than neonates, which might be responsible for the unresponsiveness to TLR9-stimulation, as confirmed by our findings in IL10-deficient mice. Conclusions/Significance This is the first report that deciphers the role played by CpG-ODN in the intestine of neonates. This work clearly demonstrates that an intraperitoneal administration of CpG-ODN is more efficient in neonates than in adults to stimulate an intestinal chemokine response due to their lower IL-10 intestinal level. In addition we report the efficiency of the oral route at inducing intestinal chemokine responses in neonate that might be taken into consideration for further vaccine development against neonatal diseases.
Infection and Immunity | 2006
I-Sarah Lean; Sonia Lacroix-Lamandé; Fabrice Laurent; Vincent McDonald
ABSTRACT Tumor necrosis factor (TNF-α) significantly reduced Cryptosporidium parvum development in a murine enterocyte cell line, and a key mechanism of action appeared to be inhibition of parasite invasion. However, TNF-α-deficient mice controlled infection as effectively as wild-type mice. This suggests that TNF-α might have only a redundant role for establishing immunity against C. parvum.
Veterinary Research | 2015
Line Olsen; Caroline Piercey Åkesson; Anne K. Storset; Sonia Lacroix-Lamandé; Preben Boysen; Coralie Metton; Timothy K. Connelley; Arild Espenes; Fabrice Laurent; Françoise Drouet
Cryptosporidium parvum, a zoonotic protozoan parasite, causes important losses in neonatal ruminants. Innate immunity plays a key role in controlling the acute phase of this infection. The participation of NCR1+ Natural Killer (NK) cells in the early intestinal innate immune response to the parasite was investigated in neonatal lambs inoculated at birth. The observed increase in the lymphocyte infiltration was further studied by immunohistology and flow cytometry with focus on distribution, density, cellular phenotype related to cytotoxic function and activation status. The frequency of NCR1+ cells did not change with infection, while their absolute number slightly increased in the jejunum and the CD8+/NCR1- T cell density increased markedly. The frequency of perforin+ cells increased significantly with infection in the NCR1+ population (in both NCR1+/CD16+ and NCR1+/CD16- populations) but not in the NCR1-/CD8+ population. The proportion of NCR1+ cells co-expressing CD16+ also increased. The fraction of cells expressing IL2 receptor (CD25), higher in the NCR1+/CD8+ population than among the CD8+/NCR1- cells in jejunal Peyer’s patches, remained unchanged during infection. However, contrary to CD8+/NCR1- lymphocytes, the intensity of CD25 expressed by NCR1+ lymphocytes increased in infected lambs. Altogether, the data demonstrating that NK cells are highly activated and possess a high cytotoxic potential very early during infection, concomitant with an up-regulation of the interferon gamma gene in the gut segments, support the hypothesis that they are involved in the innate immune response against C. parvum. The early significant recruitment of CD8+/NCR1- T cells in the small intestine suggests that they could rapidly drive the establishment of the acquired immune response.
PLOS ONE | 2010
Stéphanie Ferret-Bernard; Aude Remot; Sonia Lacroix-Lamandé; Coralie Metton; Nelly Bernardet; Françoise Drouet; Fabrice Laurent
Background Comparative studies on the response of neonates and adults to TLR stimulation have been almost exclusively limited to comparisons of human neonatal cord blood cells with peripheral blood from adults, and analyses of spleen cell responses in mice. We need to extend these studies and gain further information regarding such responses at mucosal sites. Methodology/Principal Findings We used sheep as a large animal model to study TLR agonist responses in the lymph nodes draining the intestine, an organ that must adapt to profound changes after birth. In response to the imidazoquinoline compound R-848, neonatal mesenteric lymph node (MLN) and spleen cells produced more IL-12 and, consequently, more IFNγ than their adult counterparts. This difference was age-related for both organs, but the preferential IL-12 response decreased more rapidly in the MLN, with young animals producing similar amounts of this cytokine to adults, from the age of 20 days onwards. Intracellular assays and depletion experiments identified CD14+CD11b+CD40+ cells as the main producer of IL-12. These cells accounted for a greater proportion of neonatal than of adult MLN cells, and also produced, in direct response to R-848, more IL-12 after isolation. This strong IL-12 response in neonates occurred despite the production of larger amounts of the regulatory cytokine IL-10 and the stronger upregulation of SOCS-1 and SOCS-3 mRNA levels than in adult cells, and was correlated with an increase in p38/MAPK phosphorylation. Conclusions/Significance This is the first attempt to decipher the mechanism by which neonatal MLN cells produce more IL-12 than adult cells in response to the TLR8 agonist R-848. CD14+CD11b+CD40+ IL-12-producing cells were more numerous in neonate than in adult MLN cells and displayed higher intracellular responsiveness upon R-848 stimulation. This work provides relevant information for future vaccination or immunostimulation strategies targeting neonates.
Gut microbes | 2014
Sonia Lacroix-Lamandé; William Guesdon; Françoise Drouet; Laurent Potiron; Louis Lantier; Fabrice Laurent
We found that immunostimulation of the intestinal immune system of neonatal mice by poly(I:C) injection decreased intestinal infection by the parasite Cryptosporidium parvum. We showed that the presence of dendritic cells and the cooperation of mutually dependent cytokines, such as IL-12p40, and type I and type II IFNs, were involved in the mechanism of protection induced by poly(I:C). This protection is dependent not only on TLR3-TRIF signaling, but also on the activation of the TLR5-MyD88 pathway by gut microbiota. These results raise the possibility that flagellated intestinal commensal bacteria may, in the presence of natural or synthetic agonists of TLR3, provide synergy between the TRIF and MyD88 signaling pathways, thereby favoring the development of mucosal defenses. In this addendum, we summarize these recent findings and discuss their implications for neonatal infections and immunomodulatory strategies.