Sonia M. de Morais
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sonia M. de Morais.
Drug Metabolism and Disposition | 2008
Bo Feng; Jessica B. Mills; Ralph E. Davidson; Rouchelle Mireles; John S. Janiszewski; Matthew D. Troutman; Sonia M. de Morais
Thirty-one structurally diverse marketed central nervous system (CNS)-active drugs, one active metabolite, and seven non-CNS-active compounds were tested in three P-glycoprotein (P-gp) in vitro assays: transwell assays using MDCK, human MDR1-MDCK, and mouse Mdr1a-MDCK cells, ATPase, and calcein AM inhibition. Additionally, the permeability for these compounds was measured in two in vitro models: parallel artificial membrane permeation assay and apical-to-basolateral apparent permeability in MDCK. The exposure of the same set of compounds in brain and plasma was measured in P-gp knockout (KO) and wild-type (WT) mice after subcutaneous administration. One drug and its metabolite, risperidone and 9-hydroxyrisperidone, of the 32 CNS compounds, and 6 of the 7 non-CNS drugs were determined to have positive efflux using ratio of ratios in MDR1-MDCK versus MDCK transwell assays. Data from transwell studies correlated well with the brain-to-plasma area under the curve ratios between P-gp KO and WT mice for the 32 CNS compounds. In addition, 3300 Pfizer compounds were tested in MDR1-MDCK and Mdr1a-MDCK transwell assays, with a good correlation (R2 = 0.92) between the efflux ratios in human MDR1-MDCK and mouse Mdr1a-MDCK cells. Permeability data showed that the majority of the 32 CNS compounds have moderate to high passive permeability. This work has demonstrated that in vitro transporter assays help in understanding the role of P-gp-mediated efflux activity in determining the disposition of CNS drugs in vivo, and the transwell assay is a valuable in vitro assay to evaluate human P-gp interaction with compounds for assessing brain penetration of new chemical entities to treat CNS disorders.
Drug Metabolism and Disposition | 2006
Sharon L. Ripp; Jessica B. Mills; Odette A. Fahmi; Kristen A. Trevena; Jennifer Liras; Tristan S. Maurer; Sonia M. de Morais
Cytochrome P4503A4 (CYP3A4) is the principal drug-metabolizing enzyme in human liver. Drug-drug interactions (DDIs) caused by induction of CYP3A4 can result in decreased exposure to coadministered drugs, with potential loss of efficacy. Immortalized hepatocytes (Fa2N-4 cells) have been proposed as a tool to identify CYP3A4 inducers. The purpose of the current studies was to characterize the effect of known inducers on CYP3A4 in Fa2N-4 cells, and to determine whether these in vitro data could reliably project the magnitude of DDIs caused by induction. Twenty-four compounds were chosen for these studies, based on previously published data using primary human hepatocytes. Eighteen compounds had been shown to be positive for induction, and six compounds had been shown to be negative for induction. In Fa2N-4 cells, all 18 positive controls produced greater than 2-fold maximal CYP3A4 induction, and all 6 negative controls produced less than 1.5-fold maximal CYP3A4 induction. Subsequent studies were conducted to determine the relationship between in vitro induction data and in vivo induction response. The approach was to relate in vitro induction data (Emax and EC50 values) with efficacious free plasma concentrations to calculate a relative induction score. This score was then correlated with decreases in area under the plasma concentration versus time curve values for coadministered CYP3A4 object drugs (midazolam or ethinylestradiol) from previously published clinical DDI studies. Excellent correlations (r2 values >0.92) were obtained, suggesting that Fa2N-4 cells can be used for identification of inducers as well as prediction of the magnitude of clinical DDIs.
Drug Metabolism and Disposition | 2008
Cuiping Chen; Jeffery L. Stock; Xingrong Liu; Jilin Shi; Jeffrey Van Deusen; Debra A. DiMattia; Robert Dullea; Sonia M. de Morais
We generated the organic anion transporting polypeptide (Oatp) 1b2 knockout (KO) mouse model and assessed its utility to study hepatic uptake using model compounds: cerivastatin, lovastatin acid, pravastatin, simvastatin acid, rifampicin, and rifamycin SV. A selective panel of liver cytochromes P450 (P450s) (Cyp3a11, Cyp3a13, Cyp3a16, Cyp2c29, and Cyp2c39) and transporters [Oatp1b2, Oatp1a1, Oatp1a4, Oatp1a5; organic anion transporter (Oat) 1, Oat2, Oat3; multidrug resistance gene 1 (Mdr1) a, Mdr1b; bile salt export pump, multidrug resistance associated protein (Mrp) 2, Mrp3; breast cancer resistance protein] were measured by reverse transcription-polymerase chain reaction in both KO and wild-type (WT) male mice. Male KO and WT mice received each model compound s.c. at 3 mg/kg. Blood and liver samples were obtained at 0, 0.5, and 2 h postdose and analyzed using liquid chromatography/tandem mass spectrometry. Liver/plasma concentration ratio (Kp,liver) was calculated. Students t test was used to compare the mRNA and Kp,liver between the KO and WT mice. A similar mRNA expression was observed between the KO and WT for the selected P450s and transporters except for Oatp1b2, for which the level was negligible in the KO but prominent in the WT mice with P < 0.0001. The in vivo results showed a differential effect of Oatp1b2 on hepatic uptake of the model compounds, indicating that Oatp1b2 plays a more significant role in the hepatobiliary disposition of rifampicin and lovastatin than the other compounds tested. This study suggests the Oatp1b2 mouse as a useful in vivo tool to understand drug targeting and disposition in the liver.
Drug Metabolism and Disposition | 2011
Xiaofeng Li; Juergen Delzer; Richard Voorman; Sonia M. de Morais; Yanbin Lao
The disposition of veliparib [(R)-2-(2-methylpyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide, ABT-888], a novel and potent inhibitor of poly(ADP-ribose) polymerase for the treatment of cancers, was investigated in rats and dogs after intravenous and oral administration of [3H]veliparib and compared with that of humans. Veliparib absorption was high. Dosed radioactivity was widely distributed in rat tissues. The majority of drug-related material was excreted in urine as unchanged drug (approximately 54, 41, and 70% of the dose in rats, dogs, and humans, respectively). A lactam M8 and an amino acid M3 were two major excretory metabolites in animals. In the circulation of animals and humans, veliparib was the major drug-related component, and M8 was one of the major metabolites. Monooxygenated metabolite M2 was significant in the rat and dog, and M3 was also significant in the dog. Veliparib biotransformation occurred on the pyrrolidine moiety via formation of a lactam, an amino acid, and an N-carbamoyl glucuronide, in addition to oxidation on benzoimidazole carboxamide and sequential glucuronidation. In vitro experiments using recombinant human cytochrome P450 (P450) enzymes identified CYP2D6 as the major enzyme metabolizing veliparib with minor contributions from CYP1A2, 2C19, and 3A4. Veliparib did not inhibit or induce the activities of major human P450s. Veliparib was a weak P-glycoprotein (P-gp) substrate, showing no P-gp inhibition. Taken together, these studies indicate a low potential for veliparib to cause clinically significant P-gp or P450-mediated drug-drug interactions (DDIs). Overall, the favorable dispositional and DDI profiles of veliparib should be beneficial to its safety and efficacy.
Drug Metabolism and Disposition | 2013
Ryota Kikuchi; Sonia M. de Morais; J. Cory Kalvass
P-glycoprotein (P-gp) is expressed at the blood-brain barrier (BBB) and restricts the penetration of its substrates into the central nervous system (CNS). In vitro substrate assessment for P-gp is frequently used to predict the in vivo relevance of P-gp-mediated efflux at the BBB. We have conducted a comprehensive review of literature focusing on the in vitro–in vivo correlation of P-gp efflux ratio (ER), and demonstrated that in vitro substrates of P-gp are also in vivo substrates at the BBB. It was of note that the in vitro ER in the MDCK-MDR1 cell line from National Institutes of Health was found to be a better predictor of in vivo ER than that from Netherlands Cancer Institute, with r2 values of 0.813 and 0.531, respectively. Recently, a research group proposed that 98% of Biopharmaceutics Drug Disposition Classification System (BDDCS) class 1 drugs can penetrate the brain even when those compounds are shown as P-gp substrates in vitro. However, our data analysis suggested that in vitro ER can predict the in vivo brain penetration regardless of the class in BDDCS. Considering that very few marketed CNS drugs are in vivo substrates for P-gp, the in vitro substrate assessment of P-gp should be used in the early stages of drug discovery to select compounds that are most likely to penetrate the CNS to exert their pharmacologic action.
Journal of Pharmaceutical Sciences | 2013
Ryota Kikuchi; Yanbin Lao; Daniel A.J. Bow; William J. Chiou; Mark E. Andracki; Robert A. Carr; Richard Voorman; Sonia M. de Morais
Veliparib (ABT-888) is largely eliminated as parent drug in human urine (70% of the dose). Renal unbound clearance exceeds glomerular filtration rate, suggesting the involvement of transporter-mediated active secretion. Clinically relevant pharmacokinetic interactions in the kidney have been associated with OAT1, OAT3, OCT2, MATE1, and MATE2K. In the present study, interactions of veliparib with these transporters were investigated. Veliparib inhibited OAT1, OAT3, OCT2, MATE1, and MATE2K with IC50 values of 1371, 505, 3913, 69.9, and 69.5 μM, respectively. The clinical unbound maximum plasma concentration of veliparib after single oral dose of 50 mg (0.45 μM) is manyfold lower than IC50 values for OAT1, OAT3, OCT2, MATE1, or MATE2K. These results indicate a low potential for drug-drug interaction (DDI) with OAT1/3, OCT2, or MATE1/2K. Additional studies demonstrated that veliparib is a substrate of OCT2. In Oct1/Oct2 double-knockout mice, the plasma exposure of veliparib was increased by 1.5-fold, and the renal clearance was decreased by 1.8-fold as compared with wild-type mice, demonstrating that organic cation transporters contribute to the renal elimination in vivo. In summary, the in vitro transporter data for veliparib predicts minimal potential for an OAT1/3-, OCT2-, and MATE1/2K-mediated DDI given the clinical exposure after single oral dose of 50 mg.
Xenobiotica | 2014
William J. Chiou; Sonia M. de Morais; Ryota Kikuchi; Richard Voorman; Xiaofeng Li; Daniel A.J. Bow
Abstract 1. Transient benign unconjugated hyperbilirubinemia has been observed clinically with several drugs including indinavir, cyclosporine, and rifamycin SV. Genome-wide association studies have shown significant association of OATP1B1 and UGT1A1 with elevations of unconjugated bilirubin, and OATP1B1 inhibition data correlated with clinical unconjugated hyperbilirubinemia for several compounds. 2. In this study, inhibition of OATP1B3 and UGT1A1, in addition to OATP1B1, was explored to determine whether one measure offers value over the other as a potential prospective tool to predict unconjugated hyperbilirubinemia. OATP1B1 and OATP1B3-mediated transport of bilirubin was confirmed and inhibition was determined for atazanavir, rifampicin, indinavir, amprenavir, cyclosporine, rifamycin SV and saquinavir. To investigate the intrinsic inhibition by the drugs, both in vivo Fi (fraction of intrinsic inhibition) and R-value (estimated maximum in vivo inhibition) for OATP1B1, OATP1B3 and UGT1A1 were calculated. 3. The results indicated that in vivo Fi values >0.2 or R-values >1.5 for OATP1B1 or OATP1B3, but not UGT1A1, are associated with previously reported clinical cases of drug-induced unconjugated hyperbilirubinemia. 4. In conclusion, inhibition of OATP1B1 and/or OATP1B3 along with predicted human pharmacokinetic data could be used pre-clinically to predict potential drug-induced benign unconjugated hyperbilirubinemia in the clinic.
Drug Metabolism and Disposition | 2007
Dennis Smith; Maurice Dickins; Odette A. Fahmi; Kazuhide Iwasaki; Caroline Lee; R. Scott Obach; Guy Padbury; Sonia M. de Morais; Sharon L. Ripp; Jeff Stevens; Richard Voorman; Kuresh Youdim
The understanding of the processes of induction of human drug-metabolizing enzymes has advanced considerably over the past decade. If we concentrate on CYP3A4, the most abundant form of cytochrome P450 and the one most involved in the clearance of the majority of pharmaceuticals, a clear
Drug Metabolism and Disposition | 2017
Mohamad Shebley; Jinrong Liu; Olga Kavetskaia; Jens Sydor; Sonia M. de Morais; Volker Fischer; Marjoleen Nijsen; Daniel A.J. Bow
To assess drug-drug interaction (DDI) potential for the three direct-acting antiviral (3D) regimen of ombitasvir, dasabuvir, and paritaprevir, in vitro studies profiled drug-metabolizing enzyme and transporter interactions. Using mechanistic static and dynamic models, DDI potential was predicted for CYP3A, CYP2C8, UDP-glucuronosyltransferase (UGT) 1A1, organic anion-transporting polypeptide (OATP) 1B1/1B3, breast cancer resistance protein (BCRP), and P-glycoprotein (P-gp). Perpetrator static model DDI predictions for metabolizing enzymes were within 2-fold of the clinical observations, but additional physiologically based pharmacokinetic modeling was necessary to achieve the same for drug transporters. When perpetrator interactions were assessed, ritonavir was responsible for the strong increase in exposure of sensitive CYP3A substrates, whereas paritaprevir (an OATP1B1/1B3 inhibitor) greatly increased the exposure of sensitive OATP1B1/1B3 substrates. The 3D regimen drugs are UGT1A1 inhibitors and are predicted to moderately increase plasma exposure of sensitive UGT1A1 substrates. Paritaprevir, ritonavir, and dasabuvir are BCRP inhibitors. Victim DDI predictions were qualitatively in line with the clinical observations. Plasma exposures of the 3D regimen were reduced by strong CYP3A inducers (paritaprevir and ritonavir; major CYP3A substrates) but were not affected by strong CYP3A4 inhibitors, since ritonavir (a CYP3A inhibitor) is already present in the regimen. Strong CYP2C8 inhibitors increased plasma exposure of dasabuvir (a major CYP2C8 substrate), OATP1B1/1B3 inhibitors increased plasma exposure of paritaprevir (an OATP1B1/1B3 substrate), and P-gp or BCRP inhibitors (all compounds are substrates of P-gp and/or BCRP) increased plasma exposure of the 3D regimen. Overall, the comprehensive mechanistic assessment of compound disposition along with mechanistic and PBPK approaches to predict victim and perpetrator DDI liability may enable better clinical management of nonstudied drug combinations with the 3D regimen.
Drug Metabolism and Disposition | 2016
Jianwei Shen; Michael Serby; Bruce W. Surber; Anthony J. Lee; Junli Ma; Prajakta S. Badri; Rajeev M. Menon; Olga Kavetskaia; Sonia M. de Morais; Jens Sydor; Volker Fischer
Ombitasvir (also known as ABT-267) is a potent inhibitor of hepatitis C virus (HCV) nonstructural protein 5A (NS5A), which has been developed in combination with paritaprevir/ritonavir and dasabuvir in a three direct-acting antiviral oral regimens for the treatment of patients infected with HCV genotype 1. This article describes the mass balance, metabolism, and disposition of ombitasvir in humans without coadministration of paritaprevir/ritonavir and dasabuvir. Following the administration of a single 25-mg oral dose of [14C]ombitasvir to four healthy male volunteers, the mean total percentage of the administered radioactive dose recovered was 92.1% over the 192-hour sample collection in the study. The recovery from the individual subjects ranged from 91.4 to 93.1%. Ombitasvir and corresponding metabolites were primarily eliminated in feces (90.2% of dose), mainly as unchanged parent drug (87.8% of dose), but minimally through renal excretion (1.9% of dose). Biotransformation of ombitasvir in human involves enzymatic amide hydrolysis to form M23 (dianiline), which is further metabolized through cytochrome P450–mediated oxidative metabolism (primarily by CYP2C8) at the tert-butyl group to generate oxidative and/or C-desmethyl metabolites. [14C]Ombitasvir, M23, M29, M36, and M37 are the main components in plasma, representing about 93% of total plasma radioactivity. The steady-state concentration measurement of ombitasvir metabolites by liquid chromatography–mass spectrometry analysis in human plasma following multiple doses of ombitasvir, in combination with paritaprevir/ritonavir and dasabuvir, confirmed that ombitasvir is the main component (51.9% of all measured drug-related components), whereas M29 (19.9%) and M36 (13.1%) are the major circulating metabolites. In summary, the study characterized ombitasvir metabolites in circulation, the metabolic pathways, and the elimination routes of the drug.