Sonia Mayra Pérez-Tapia
Instituto Politécnico Nacional
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sonia Mayra Pérez-Tapia.
Journal of Pharmaceutical and Biomedical Analysis | 2014
Emilio Medina-Rivero; Giovanna Merchand‐Reyes; Lenin Pavón; Said Vázquez-Leyva; Gilberto Pérez-Sánchez; Nohemí Salinas-Jazmín; Sergio Estrada-Parra; Marco A. Velasco-Velázquez; Sonia Mayra Pérez-Tapia
Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that modulate immune responses in various diseases. Due their complexity, standardized methods to identify their physicochemical properties and determine that production batches are biologically active must be established. We aimed to develop and validate a size exclusion ultra performance chromatographic (SE-UPLC) method to characterize Transferon™, a DLE that is produced under good manufacturing practices (GMPs). We analyzed an internal human DLE standard and 10 representative batches of Transferon™, all of which had a chromatographic profile characterized by 8 main peaks and a molecular weight range between 17.0 and 0.2kDa. There was high homogeneity between batches with regard to retention times and area percentages, varying by less than 0.2% and 30%, respectively, and the control chart was within 3 standard deviations. To analyze the biological activity of the batches, we studied the ability of Transferon™ to stimulate IFN-γ production in vitro. Transferon™ consistently induced IFN-γ production in Jurkat cells, demonstrating that this method can be included as a quality control step in releasing Transferon™ batches. Because all analyzed batches complied with the quality attributes that were evaluated, we conclude that the DLE Transferon™ is produced with high homogeneity.
Journal of Neuroimmunology | 2016
Danelia Mendieta; Dora Luz uz de la Cruz-Aguilera; Maria Isabel Barrera-Villalpando; Enrique Becerril-Villanueva; Rodrigo Arreola; Erick Hernández-Ferreira; Sonia Mayra Pérez-Tapia; Gilberto Pérez-Sánchez; María Eugenia Garcés-Alvarez; Lucinda Aguirre-Cruz; Marco A. Velasco-Velázquez; Lenin Pavón
Fibromyalgia (FM) is a chronic disease that has been linked to inflammatory reactions and changes in the systemic levels of proinflammatory cytokines that modulate responses in the sympathetic nervous system and hypothalamic-pituitary-adrenal axis. We found that concentrations of IL-6 and IL-8 were elevated in FM patients. Both cytokines correlated with clinical scores, suggesting that IL-6 and IL-8 have additive or synergistic effects in perpetuating the chronic pain in FM patients. These findings indicate that IL-6 and IL-8 are two of the most constant inflammatory mediators in FM and that their levels correlate significantly with the severity of symptoms.
Clinical & Developmental Immunology | 2013
J. Galicia-Carreón; C. Santacruz; J. Ayala-Balboa; A. Robles-Contreras; Sonia Mayra Pérez-Tapia; Y. Garfias; E. Hong; Maria Carmen Jimenez-Martinez
Allergic conjunctivitis (AC) is one of the most common eye disorders in ophthalmology. In mice models, it has been suggested that control of allergic conjunctivitis is a delicate balance between Tregs and inflammatory migrating effector cells. Our aim was to evaluate the frequency of Tregs and the frequency of homing receptors expressing cells in peripheral blood mononuclear cells (PBMC) from patients with perennial allergic conjunctivitis (PAC). The analyses of phenotypic markers on CD4+ T cells and both soluble or intracellular cytokines were performed by flow cytometry. CD4+CD25+ cells were 15 times more frequent in PBMC from patients than HC; the vast majority of these CD4+CD25+ cells were FOXP3−, and most of CD4+ T cells were CCR4+ and CCR9+ cells. Upon allergen-stimulation, no significant changes were observed in frequency of Treg; however, an increased frequency of CD4+CCR4+CCR9+ cells, CD4+CD103+ cells and CD4+CD108+ cells with increased IL-5, IL-6, and IL-8 production was observed. These findings suggest an immune dysregulation in PAC, characterized by diminished frequency of Tregs and increased frequency of circulating activated CD4+ T cells; upon allergen-stimulation, these cells were expressing cell-surface molecules related to mucosa homing and were able to trigger an inflammatory microenvironment.
International Journal of Molecular Sciences | 2015
Concepcion Santacruz; Marisela Linares; Yonathan Garfias; Luisa M. Loustaunau; Lenin Pavón; Sonia Mayra Pérez-Tapia; Maria Carmen Jimenez-Martinez
Corneal infections are frequent and potentially vision-threatening diseases, and despite the significance of the immunological response in animal models of microbial keratitis (MK), it remains unclear in humans. The aim of this study was to describe the cytokine profile of tears in patients with MK. Characteristics of ocular lesions such as size of the epithelial defect, stromal infiltration, and hypopyon were analyzed. Immunological evaluation included determination of interleukine (IL)-1β, IL-6, IL-8, IL-10, IL-12 and tumor necrosis factor (TNF)-α in tear samples obtained from infected eyes of 28 patients with MK and compared with their contralateral non-infected eyes. Additionally, frequency of CD4+, CD8+, CD19+ and CD3−CD56+ cells was also determined in peripheral blood mononuclear cells in patients with MK, and compared with 48 healthy controls. Non-significant differences were observed in the size of the epithelial defect, stromal infiltration, and hypopyon. Nevertheless, we found an immunological profile apparently related to MK etiology. IL-8 > IL-6 in patients with bacterial keratitis; IL-8 > IL-6 > IL-1β and increased frequency of circulating CD3−CD56+ NK cells in patients with gram-negative keratitis; and IL-8 = IL-6 > IL-1β in patients with fungal keratitis. Characterization of tear cytokines from patients with MK could aid our understanding of the immune pathophysiological mechanisms underlying corneal damage in humans.
Immunobiology | 2017
Marcia Campillo-Navarro; Kahiry Leyva-Paredes; Luis Donis-Maturano; Marco Antonio González-Jiménez; Yuriria Paredes-Vivas; Arturo Cérbulo-Vázquez; Blanca Estela García-Pérez; Stephen E. Ullrich; Leopoldo Flores-Romo; Sonia Mayra Pérez-Tapia; Sergio Estrada-Parra; Iris Estrada-García; Rommel Chacón-Salinas
Mast cells play an essential role in different immunological phenomena including allergy and infectious diseases. Several bacteria induce mast cell activation leading to degranulation and the production of several cytokines and chemokines. However, mast cells also have different microbicidal activities such as phagocytosis and the release of DNA with embedded granular proteins known as Mast Cell Extracellular Traps (MCETs). Although previous reports indicate that extracellular bacteria are able to induce MCETs little is known if intracellular bacteria can induce these structures. In this work, we evaluated MCETs induction by the intracellular bacteria Listeria monocytogenes. We found that mast cells released DNA after stimulation with L. monocytogenes, and this DNA was complexed to histone and tryptase. Before extracellular DNA release, L. monocytogenes induced modifications to the mast cell nuclear envelope and DNA was detected outside the nucleus. L. monocytogenes stimulated mast cells to produce significant amounts of reactive oxygen species (ROS) and blocking NADPH oxidase diminished DNA release by mast cells. Finally, MCETs showed antimicrobial activity against L. monocytogenes that was partially blocked when β-hexosaminidase activity was inhibited. These results show that L. monocytogenes induces mast cells to produce microbicidal MCETs, suggesting a role for mast cells in containing infection beyond the induction of inflammation.
Frontiers in Immunology | 2018
Juan Carlos Almagro; Tracy R. Daniels-Wells; Sonia Mayra Pérez-Tapia; Manuel L. Penichet
The remarkable progress in engineering and clinical development of therapeutic antibodies in the last 40 years, after the seminal work by Köhler and Milstein, has led to the approval by the United States Food and Drug Administration (FDA) of 21 antibodies for cancer immunotherapy. We review here these approved antibodies, with emphasis on the methods used for their discovery, engineering, and optimization for therapeutic settings. These methods include antibody engineering via chimerization and humanization of non-human antibodies, as well as selection and further optimization of fully human antibodies isolated from human antibody phage-displayed libraries and immunization of transgenic mice capable of generating human antibodies. These technology platforms have progressively led to the development of therapeutic antibodies with higher human content and, thus, less immunogenicity. We also discuss the genetic engineering approaches that have allowed isotype switching and Fc modifications to modulate effector functions and bioavailability (half-life), which together with the technologies for engineering the Fv fragment, have been pivotal in generating more efficacious and better tolerated therapeutic antibodies to treat cancer.
Clinical & Developmental Immunology | 2015
Nohemí Salinas-Jazmín; Sergio Estrada-Parra; Miguel Becerril-García; Alberto Y. Limón-Flores; Said Vázquez-Leyva; Emilio Medina-Rivero; Lenin Pavón; Marco A. Velasco-Velázquez; Sonia Mayra Pérez-Tapia
Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that are released on disruption of peripheral blood leukocytes from healthy donors. DLEs improve clinical responses in infections, allergies, cancer, and immunodeficiencies. Transferon is a human DLE that has been registered as a hemoderivate by Mexican health authorities and commercialized nationally. To develop an animal model that could be used routinely as a quality control assay for Transferon, we standardized and validated a murine model of cutaneous HSV-1 infection. Using this model, we evaluated the activity of 27 Transferon batches. All batches improved the survival of HSV-1-infected mice, wherein average survival rose from 20.9% in control mice to 59.6% in Transferon-treated mice. The activity of Transferon correlated with increased serum levels of IFN-γ and reduced IL-6 and TNF-α concentrations. Our results demonstrate that (i) this mouse model of cutaneous herpes can be used to examine the activity of DLEs, such as Transferon; (ii) the assay can be used as a routine test for batch release; (iii) Transferon is produced with high homogeneity between batches; (iv) Transferon does not have direct virucidal, cytoprotective, or antireplicative effects; and (v) the protective effect of Transferon in vivo correlates with changes in serum cytokines.
Frontiers in Immunology | 2017
Marisol Pérez-Toledo; Nuriban Valero-Pacheco; Rodolfo Pastelin-Palacios; Cristina Gil-Cruz; Christian Perez-Shibayama; Mario A. Moreno-Eutimio; Ingeborg Becker; Sonia Mayra Pérez-Tapia; Lourdes Arriaga-Pizano; Adam F. Cunningham; Armando Isibasi; Laura C. Bonifaz; Constantino López-Macías
Several microbial components, such as bacterial DNA and flagellin, have been used as experimental vaccine adjuvants because of their inherent capacity to efficiently activate innate immune responses. Likewise, our previous work has shown that the major Salmonella Typhi (S. Typhi) outer membrane proteins OmpC and OmpF (porins) are highly immunogenic protective antigens that efficiently stimulate innate and adaptive immune responses in the absence of exogenous adjuvants. Moreover, S. Typhi porins induce the expression of costimulatory molecules on antigen-presenting cells through toll-like receptor canonical signaling pathways. However, the potential of major S. Typhi porins to be used as vaccine adjuvants remains unknown. Here, we evaluated the adjuvant properties of S. Typhi porins against a range of experimental and clinically relevant antigens. Co-immunization of S. Typhi porins with ovalbumin (OVA), an otherwise poorly immunogenic antigen, enhanced anti-OVA IgG titers, antibody class switching, and affinity maturation. This adjuvant effect was dependent on CD4+ T-cell cooperation and was associated with an increase in IFN-γ, IL-17A, and IL-2 production by OVA-specific CD4+ T cells. Furthermore, co-immunization of S. Typhi porins with an inactivated H1N1 2009 pandemic influenza virus experimental vaccine elicited higher hemagglutinating anti-influenza IgG titers, antibody class switching, and affinity maturation. Unexpectedly, co-administration of S. Typhi porins with purified, unconjugated Vi capsular polysaccharide vaccine (Vi CPS)—a T-independent antigen—induced higher IgG antibody titers and class switching. Together, our results suggest that S. Typhi porins OmpC and OmpF are versatile vaccine adjuvants, which could be used to enhance T-cell immune responses toward a Th1/Th17 profile, while improving antibody responses to otherwise poorly immunogenic T-dependent and T-independent antigens.
Clinical & Developmental Immunology | 2016
Dalia Ramírez-Ramírez; Eduardo Vadillo; Lourdes Arriaga-Pizano; Hector Mayani; Sergio Estrada-Parra; Marco A. Velasco-Velázquez; Sonia Mayra Pérez-Tapia; Rosana Pelayo
Reconstitution of the hematopoietic system during immune responses and immunological and neoplastic diseases or upon transplantation depends on the emergent differentiation of hematopoietic stem/progenitor cells within the bone marrow. Although in the last decade the use of dialyzable leukocyte extracts (DLE) as supportive therapy in both infectious and malignant settings has increased, its activity on the earliest stages of human hematopoietic development remains poorly understood. Here, we have examined the ability of DLE to promote replenishment of functional lymphoid lineages from CD34+ cells. Our findings suggest that DLE increases their differentiation toward a conspicuous CD56+CD16+CD11c+ NK-like cell population endowed with properties such as IFNy production, tumor cell cytotoxicity, and the capability of inducing γδ T lymphocyte proliferation. Of note, long-term coculture controlled systems showed the bystander effect of DLE-stromal cells by providing NK progenitors with signals to overproduce this cell subset. Thus, by direct effect on progenitor cells and through activation and remodeling of the supporting hematopoietic microenvironment, DLE may contribute a robust innate immune response by promoting the emerging lymphopoiesis of functional CD11c+ NK cells in a partially TLR-related manner. Unraveling the identity and mechanisms of the involved DLE components may be fundamental to advance the NK cell-based therapy field.
BioMed Research International | 2016
Emilio Medina-Rivero; Luis Vallejo-Castillo; Said Vázquez-Leyva; Gilberto Pérez-Sánchez; Liliana Favari; Marco A. Velasco-Velázquez; Sergio Estrada-Parra; Lenin Pavón; Sonia Mayra Pérez-Tapia
Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes.