Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia Messina is active.

Publication


Featured researches published by Sonia Messina.


Journal of Magnetic Resonance Imaging | 2007

Muscle MRI in inherited neuromuscular disorders: past, present, and future.

Eugenio Mercuri; Anna Pichiecchio; Joanna M. Allsop; Sonia Messina; Marika Pane; Francesco Muntoni

Interest in muscle MRI has been largely stimulated in the last few years by the recognition of an increasing number of genetic defects in the field of inherited neuromuscular disorders. Muscle ultrasound (US) and computed tomography (CT) have been used to detect the presence of muscle involvement in patients affected by these disorders, but until recently the use of muscle MRI has been, with a few exceptions, limited to detecting inflammatory forms. The aim of this review is to illustrate how muscle MRI, in combination with clinical evaluation, can contribute to the selection of appropriate genetic tests and more generally in the differential diagnosis of genetically distinct forms of neuromuscular disorders. Possible future applications of muscle MRI are also discussed. J. Magn. Reson. Imaging 2007.


Neurology | 2007

Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy

Eugenio Mercuri; Enrico Bertini; Sonia Messina; A. Solari; Adele D'Amico; Carla Angelozzi; Roberta Battini; Angela Berardinelli; P. Boffi; C. Bruno; C. Cini; Francesca Colitto; Maria Kinali; Carlo Minetti; Tiziana Mongini; Lucia Morandi; Giovanni Neri; S. Orcesi; Marika Pane; Marco Pelliccioni; Antonella Pini; Francesco Danilo Tiziano; Marcello Villanova; Giuseppe Vita; Cristina Beate Brahe

Objective: To assess the efficacy of phenylbutyrate (PB) in patients with spinal muscular atrophy in a randomized, double-blind, placebo-controlled trial involving 10 Italian centers. Methods: One hundred seven children were assigned to receive PB (500 mg/kg/day) or matching placebo on an intermittent regimen (7 days on/7 days off) for 13 weeks. The Hammersmith functional motor scale (primary outcome measure), myometry, and forced vital capacity were assessed at baseline and at weeks 5 and 13. Results: Between January and September 2004, 107 patients aged 30 to 154 months were enrolled. PB was well tolerated, with only one child withdrawing because of adverse events. Mean improvement in functional score was 0.60 in the PB arm and 0.73 in placebo arm (p = 0.70). Changes in the secondary endpoints were also similar in the two study arms. Conclusions: Phenylbutyrate was not effective at the regimen, schedule, and duration used in this study.


American Journal of Human Genetics | 2013

Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan

Keren J. Carss; Elizabeth Stevens; A. Reghan Foley; Sebahattin Cirak; Moniek Riemersma; Silvia Torelli; Alexander Hoischen; Tobias Willer; Monique van Scherpenzeel; Steven A. Moore; Sonia Messina; Enrico Bertini; Carsten G. Bönnemann; Jose E. Abdenur; Carla Grosmann; Akanchha Kesari; R. Quinlivan; Leigh B. Waddell; Helen Young; Elizabeth Wraige; Shu Yau; Lina Brodd; L. Feng; C. Sewry; Daniel G. MacArthur; Kathryn N. North; Eric P. Hoffman; Derek L. Stemple; Hans van Bokhoven; Kevin P. Campbell

Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.


Neuromuscular Disorders | 2004

Pilot trial of phenylbutyrate in spinal muscular atrophy

Eugenio Mercuri; Enrico Bertini; Sonia Messina; Marco Pelliccioni; Adele D'Amico; Francesca Colitto; Massimiliano Mirabella; Francesco Danilo Tiziano; Tiziana Vitali; Carla Angelozzi; Maria Kinali; M. Main; Christina Brahe

The aim of this study was to evaluate tolerability and efficacy of phenylbutyrate (PB) in patients with spinal muscular atrophy (SMA). Ten patients with SMA type II confirmed by DNA studies (age range 2.6-12.7 years, mean age 6.01) were started on oral PB (triButyrate) in powder or tablets. The dosage was 500 mg/kg per day (maximum dose 19 g/d), divided in five doses (every 4 h, skipping one night-dose) using an intermittent schedule (7 days on and 7 days off). Measures of efficacy were the change in motor function from baseline to 3 and 9 weeks, by means of the Hammersmith functional motor scale. In children older than 5 years, muscle strength, assessed by myometry, and forced vital capacity were also measured. We found a significant increase in the scores of the Hammersmith functional scale between the baseline and both 3-weeks (P < 0.012) and 9-weeks assessments (P < 0.004). Our results indicate that PB might be beneficial to SMA patients without producing any major side effect. Larger prospective randomised, double-blind, placebo controlled trials are needed to confirm these preliminary findings.


Experimental Neurology | 2006

Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice

Sonia Messina; Alessandra Bitto; M'hammed Aguennouz; Letteria Minutoli; Maria C. Monici; Domenica Altavilla; Francesco Squadrito; Giuseppe Vita

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease due to a mutation in the dystrophin gene and the consequential protein deficiency in muscle. How the lack of the sarcolemmal protein dystrophin gives rise to the final disease status is still not clear. Several evidences suggest a role of nuclear factor kappa-B (NF-kappaB), a pleiotropic transcription factor, in muscle degeneration and regeneration in DMD patients and mdx mice. We investigated the effects of NF-kappaB blocking by pyrrolidine dithiocarbamate (PDTC), a well-known NF-kappaB inhibitor, on dystrophic process in mdx mice. Five-week-old mdx and wild-type mice received three times a week for 5 weeks either PDTC (50 mg/kg) or its vehicle. PDTC treatment: (i) increased forelimb strength (+20%; P < 0.05) and strength normalized to weight (+24%; P < 0.05) and a decreased fatigue percentage (-61%; P < 0.05) in mdx mice, (ii) blunted the augmented NF-kappaB nuclear binding activity and the enhanced TNF-alpha expression in dystrophic muscles (P < 0.01), (iii) at a quantitative morphological evaluation of extensor digitorum longus (EDL) and biceps muscles, increased area with normal fibers (P < 0.05, in EDL), reduced muscle necrosis (P < 0.05 in biceps; P < 0.01 in EDL), and enhanced muscle regeneration (P < 0.01, in biceps). Our data support the hypothesis that NF-kappaB contributes to the perpetuation of the dystrophic damage and show that its blockade produces beneficial effects on functional, biochemical, and morphological parameters in mdx mice. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD.


Neuromuscular Disorders | 2010

North Star Ambulatory Assessment, 6-minute walk test and timed items in ambulant boys with Duchenne muscular dystrophy

E. Mazzone; Diego Martinelli; Angela Berardinelli; Sonia Messina; Adele D’Amico; Gessica Vasco; M. Main; Luca Doglio; Luisa Politano; Filippo Cavallaro; Silvia Frosini; Luca Bello; Adelina Carlesi; Anna Maria Bonetti; Elisabetta Zucchini; Roberto De Sanctis; Marianna Scutifero; Flaviana Bianco; Francesca Rossi; Maria Chiara Motta; Annalisa Sacco; Maria Alice Donati; Tiziana Mongini; Antonella Pini; Roberta Battini; Elena Pegoraro; Marika Pane; Elisabetta Pasquini; Claudio Bruno; Giuseppe Vita

The North Star Ambulatory Assessment is a functional scale specifically designed for ambulant boys affected by Duchenne muscular dystrophy (DMD). Recently the 6-minute walk test has also been used as an outcome measure in trials in DMD. The aim of our study was to assess a large cohort of ambulant boys affected by DMD using both North Star Assessment and 6-minute walk test. More specifically, we wished to establish the spectrum of findings for each measure and their correlation. This is a prospective multicentric study involving 10 centers. The cohort included 112 ambulant DMD boys of age ranging between 4.10 and 17 years (mean 8.18±2.3 DS). Ninety-one of the 112 were on steroids: 37/91 on intermittent and 54/91 on daily regimen. The scores on the North Star assessment ranged from 6/34 to 34/34. The distance on the 6-minute walk test ranged from 127 to 560.6 m. The time to walk 10 m was between 3 and 15 s. The time to rise from the floor ranged from 1 to 27.5 s. Some patients were unable to rise from the floor. As expected the results changed with age and were overall better in children treated with daily steroids. The North Star assessment had a moderate to good correlation with 6-minute walk test and with timed rising from floor but less with 10 m timed walk/run test. The 6-minute walk test in contrast had better correlation with 10 m timed walk/run test than with timed rising from floor. These findings suggest that a combination of these outcome measures can be effectively used in ambulant DMD boys and will provide information on different aspects of motor function, that may not be captured using a single measure.


Neuromuscular Disorders | 2004

Magnetic resonance imaging of muscle in congenital myopathies associated with RYR1 mutations

Heinz Jungbluth; M.R. Davis; Clemens R. Müller; Serena J. Counsell; Joanna M. Allsop; Arijit Chattopadhyay; Sonia Messina; Eugenio Mercuri; Nigel G. Laing; C. Sewry; Graeme M. Bydder; Francesco Muntoni

Mutations in the skeletal muscle ryanodine receptor (RYR1) gene are associated with a wide range of phenotypes, comprising central core disease and distinct subgroups of multi-minicore disease. We report muscle MRI findings of 11 patients from eight families with RYR1 mutations (n=9) or confirmed linkage to the RYR1 locus (n=2). Patients had clinical features of a congenital myopathy with a wide variety of associated histopathological changes. Muscle MR images showed a consistent pattern characterized by (a) within the thigh: selective involvement of vasti, sartorius, adductor magnus and relative sparing of rectus, gracilis and adductor longus; (b) within the lower leg: selective involvement of soleus, gastrocnemii and peroneal group and relative sparing of the tibialis anterior. Our findings indicate that patients with RYR1-related congenital myopathies have a recognizable pattern of muscle involvement irrespective of the variability of associated histopathological findings. Muscle MRI may supplement clinical assessment and aid selection of genetic tests particularly in patients with non-diagnostic or equivocal histopathological features.


Annals of Neurology | 2010

Muscle Magnetic Resonance Imaging Involvement in Muscular Dystrophies with Rigidity of the Spine

Eugenio Mercuri; Emma Clements; Amaka C. Offiah; Anna Pichiecchio; Gessica Vasco; Flaviana Bianco; Angela Berardinelli; Adnan Y. Manzur; Marika Pane; Sonia Messina; Francesca Gualandi; Enzo Ricci; Mary A. Rutherford; Francesco Muntoni

The aim of the study was to evaluate whether the visual analysis of muscle magnetic resonance imaging scans can identify specific patterns of muscle involvement.


Annals of Neurology | 2012

DPM2-CDG: A muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy

Rita Barone; Chiara Aiello; Valerie Race; Eva Morava; François Foulquier; Moniek Riemersma; Chiara Passarelli; Daniela Concolino; Massimo Carella; Filippo M. Santorelli; Wendy Vleugels; Eugenio Mercuri; Domenico Garozzo; Luisa Sturiale; Sonia Messina; Jaak Jaeken; Agata Fiumara; Ron A. Wevers; Enrico Bertini; Gert Matthijs; Dirk J. Lefeber

Congenital disorders of glycosylation (CDG) are a group of metabolic diseases due to defects in protein and lipid glycosylation. We searched for the primary defect in 3 children from 2 families with a severe neurological phenotype, including profound developmental delay, intractable epilepsy, progressive microcephaly, severe hypotonia with elevated blood creatine kinase levels, and early fatal outcome. There was clinical evidence of a muscular dystrophy–dystroglycanopathy syndrome, supported by deficient O‐mannosylation by muscle immunohistochemistry.


Neurology | 2005

Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene

Heinz Jungbluth; Haiyan Zhou; L. Hartley; B. Halliger-Keller; Sonia Messina; Cheryl Longman; Martin Brockington; S. Robb; Volker Straub; Thomas Voit; Michael Swash; A. Ferreiro; Graeme M. Bydder; C. Sewry; Clemens R. Müller; F. Muntoni

Background: Minicore myopathy (multi-minicore disease [MmD]) is a congenital myopathy characterized by multifocal areas with loss of oxidative activity on muscle biopsy. MmD is clinically heterogeneous and distinct phenotypes have been associated with recessive mutations in either the selenoprotein N (SEPN1) or the skeletal muscle ryanodine receptor (RYR1) gene, also implicated in central core disease and malignant hyperthermia. External ophthalmoplegia is an additional finding in a subset of patients with MmD. Objective: To clinically and genetically examine families with MmD and external ophthalmoplegia. Methods: The authors investigated 11 affected individuals from 5 unrelated families. Clinical, histopathologic, and imaging studies were performed and RYR1 haplotyping and mutational analysis were carried out. Results: All patients had multiple cores involving the entire fiber diameter on longitudinal sections. Weakness and wasting in the shoulder girdle, scoliosis, moderate respiratory impairment, and feeding difficulties were prominent. In contrast to SEPN1-related myopathies, soleus was more severely affected than gastrocnemius on muscle MRI. Haplotyping suggested linkage to the RYR1 locus in informative families and mutational screening revealed four novel RYR1 mutations in three unrelated families; in addition, functional haploinsufficiency was found in one allele of two recessive cases. Conclusion: These findings expand the phenotypic spectrum associated with mutations in the skeletal muscle ryanodine receptor (RYR1) gene. Recessive mutations of domains commonly affected in malignant hyperthermia appear to be particularly prevalent in multi-minicore disease with external ophthalmoplegia and might suggest a different pathomechanism from that involved in central core disease.

Collaboration


Dive into the Sonia Messina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marika Pane

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Enrico Bertini

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eugenio Mercuri

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adele D'Amico

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge