Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia Minuzzo is active.

Publication


Featured researches published by Sonia Minuzzo.


Journal of Immunology | 2007

Identification of Genes Selectively Regulated by IFNs in Endothelial Cells

Stefano Indraccolo; Ulrich Pfeffer; Sonia Minuzzo; Giovanni Esposito; Valeria Roni; Susanna Mandruzzato; Nicoletta Ferrari; Luca Anfosso; Raffaella Dell'Eva; Douglas M. Noonan; Luigi Chieco-Bianchi; Adriana Albini; Alberto Amadori

IFNs are highly pleiotropic cytokines also endowed with marked antiangiogenic activity. In this study, the mRNA expression profiles of endothelial cells (EC) exposed in vitro to IFN-α, IFN-β, or IFN-γ were determined. We found that in HUVEC as well as in other EC types 175 genes were up-regulated (>2-fold increase) by IFNs, including genes involved in the host response to RNA viruses, inflammation, and apoptosis. Interestingly, 41 genes showed a >5-fold higher induction by IFN-α in EC compared with human fibroblasts; among them, the gene encoding the angiostatic chemokine CXCL11 was selectively induced by IFN-α in EC along with other genes associated with angiogenesis regulation, including CXCL10, TRAIL, and guanylate-binding protein 1. These transcriptional changes were confirmed and extended by quantitative PCR analysis and ELISA; whereas IFN-α and IFN-β exerted virtually identical effects on transcriptome modulation, a differential gene regulation by type I and type II IFN emerged, especially as far as quantitative aspects were concerned. In vivo, IFN-α-producing tumors overexpressed murine CXCL10 and CXCL11, guanylate-binding protein 1, and TRAIL, with evidence of CXCL11 production by tumor-associated EC. Overall, these findings improve our understanding of the antiangiogenic effects of IFNs by showing that these cytokines trigger an antiangiogenic transcriptional program in EC. Moreover, we suggest that quantitative differences in the magnitude of the transcriptional activation of IFN-responsive genes could form the basis for cell-specific transcriptional signatures.


Cancer Research | 2008

The Side Population of Ovarian Cancer Cells Is a Primary Target of IFN-α Antitumor Effects

Lidia Moserle; Stefano Indraccolo; Margherita Ghisi; Chiara Frasson; Elena Fortunato; Silvana Canevari; Silvia Miotti; Valeria Tosello; Rita Zamarchi; Alberto Corradin; Sonia Minuzzo; Elisabetta Rossi; Giuseppe Basso; Alberto Amadori

The side population (SP), recently identified in several normal tissues and in a variety of tumors based on its ability to extrude some fluorescent dyes, may comprise cells endowed with stem cell features. In this study, we investigated the presence of SP in epithelial ovarian cancer and found it in 9 of 27 primary tumor samples analyzed, as well as in 4 of 6 cultures from xenotransplants. SP cells from one xenograft bearing a large SP fraction were characterized in detail. SP cells had higher proliferation rates, were much less apoptotic compared with non-SP cells, and generated tumors more rapidly than non-SP cells. We also investigated the effects of IFN-alpha, a cytokine that has widely been used to treat solid tumors, on epithelial ovarian cancer cells and observed that IFN-alpha exerted marked antiproliferative and proapoptotic effects on primary cultures containing high numbers of SP cells. In vitro, IFN-alpha treatment invariably caused a dramatic reduction in SP size in tumor cell lines of different origins; moreover, IFN-alpha treatment of purified SP cells was associated with a distinctive change in their transcriptional profile. Gene therapy with human IFN-alpha resulted in regression of established tumors bearing a large SP fraction, which was not observed when tumors bearing low SP levels were treated. These findings could have relevant clinical implications because they imply that tumors bearing large SP numbers, albeit rare, could be sensitive to IFN-alpha treatment.


Cancer Research | 2009

Cross-talk between Tumor and Endothelial Cells Involving the Notch3-Dll4 Interaction Marks Escape from Tumor Dormancy

Stefano Indraccolo; Sonia Minuzzo; Massimo Masiero; Irene Pusceddu; Luca Persano; Lidia Moserle; Andrea Reboldi; Elena Favaro; Marco Mecarozzi; Giuseppina Di Mario; Isabella Screpanti; Maurilio Ponzoni; Claudio Doglioni; Alberto Amadori

The Notch ligand Dll4 has a recognized role during both physiologic and tumor angiogenesis, as it contributes to regulate Notch activity in endothelial cells (EC). The effects of Dll4 on Notch signaling in tumor cells expressing Notch receptors remain, however, largely unknown. Here, we report that escape of human T-cell acute lymphoblastic leukemia (T-ALL) cells or colorectal cancer cells from dormancy is associated with Dll4 expression in the tumor microenvironment and increased Notch3 signaling in tumor cells. Dll4 was expressed at early time points during the angiogenic process, and its expression preceded perfusion of the newly established vessels. Treatment of EC with angiogenic factors induced Dll4 expression and increased Notch3 activation in cocultured T-ALL cells. Neutralization of Dll4 greatly reduced EC-mediated activation of Notch 3 signaling in T-ALL cells and blocked tumorigenesis. Moreover, silencing Notch3 by RNA interference had marked antiproliferative and proapoptotic effects on T-ALL cells in vitro and reduced tumorigenicity in vivo. Our results elucidate a novel mechanism by which a direct interplay between endothelial and tumor cells promotes survival and triggers tumor growth.


Gene Therapy | 2002

Differential effects of angiostatin, endostatin and interferon-α1 gene transfer on in vivo growth of human breast cancer cells

Stefano Indraccolo; Eleonora Gola; A Rosato; Sonia Minuzzo; Walter Habeler; Veronica Tisato; Valeria Roni; G Esposito; M Morini; Adriana Albini; Douglas M. Noonan; M Ferrantini; Alberto Amadori; Luigi Chieco-Bianchi

The administration of different angiogenesis inhibitors by gene transfer has been shown to result in inhibition of tumor growth in animal tumor models, but the potency of these genes has been only partially evaluated in comparative studies to date. To identify the most effective anti-angiogenic molecule for delivery by retroviral vectors, we investigated the effects of angiostatin, endostatin and interferon(IFN)-α1 gene transfer in in vivo models of breast cancer induced neovascularization and tumor growth. Moloney leukemia virus-based retroviral vectors for expression of murine angiostatin, endostatin and IFN-α1 were generated, characterized, and used to transduce human breast cancer cell lines (MCF7 and MDA-MB435). Secretion of the recombinant proteins was confirmed by biological and Western blotting assays. Their production did not impair in vitro growth of these breast cancer cells nor their viability, and did not interfere with the expression of angiogenic factors. However, primary endothelial cell proliferation and migration in vitro were inhibited by supernatants of the transduced cells containing angiostatin, endostatin, and IFN-α1. Stable gene transfer of the IFN-α1 cDNA by retroviral vectors in both MCF7 and MDA-MB435 cells resulted in a marked and long-lasting inhibition of tumor growth in nude mice that was associated with reduced vascularization. Endostatin reduced the in vivo growth of MDA-MB435, but not MCF7 cells, despite similar levels of in vivo production, and angiostatin did not impair the in vivo growth of either cell line. These findings indicate heterogeneity in the therapeutic efficacy of angiostatic molecules delivered by viral vectors and suggest that gene therapy with IFN-α1 and endostatin might be useful for treatment of breast cancer.


Leukemia | 2014

Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts

Valentina Agnusdei; Sonia Minuzzo; Chiara Frasson; A Grassi; F Axelrod; S Satyal; A Gurney; Timothy Hoey; E Seganfreddo; G Basso; S Valtorta; R M Moresco; Alberto Amadori; Stefano Indraccolo

T-acute lymphoblastic leukemia (T-ALL) is characterized by several genetic alterations and poor prognosis in about 20–25% of patients. Notably, about 60% of T-ALL shows increased Notch1 activity, due to activating NOTCH1 mutations or alterations in the FBW7 gene, which confer to the cell a strong growth advantage. Therapeutic targeting of Notch signaling could be clinically relevant, especially for chemotherapy refractory patients. This study investigated the therapeutic efficacy of a novel anti-Notch1 monoclonal antibody by taking advantage of a collection of pediatric T-ALL engrafted systemically in NOD/SCID mice and genetically characterized with respect to NOTCH1/FBW7 mutations. Anti-Notch1 treatment greatly delayed engraftment of T-ALL cells bearing Notch1 mutations, including samples derived from poor responders or relapsed patients. Notably, the therapeutic efficacy of anti-Notch1 therapy was significantly enhanced in combination with dexamethasone. Anti-Notch1 treatment increased T-ALL cell apoptosis, decreased proliferation and caused strong inhibitory effects on Notch-target genes expression along with complex modulations of gene expression profiles involving cell metabolism. Serial transplantation experiments suggested that anti-Notch1 therapy could compromise leukemia-initiating cell functions. These results show therapeutic efficacy of Notch1 blockade for T-ALL, highlight the potential of combination with dexamethasone and identify surrogate biomarkers of the therapeutic response.


Leukemia | 2011

Notch3-mediated regulation of MKP-1 levels promotes survival of T acute lymphoblastic leukemia cells

Massimo Masiero; Sonia Minuzzo; I Pusceddu; Lidia Moserle; Luca Persano; Valentina Agnusdei; Valeria Tosello; G Basso; Alberto Amadori; Stefano Indraccolo

Activation of the Notch pathway occurs commonly in T acute lymphoblastic leukemia (T-ALL) because of mutations in Notch1 or Fbw7 and is involved in the regulation of cell proliferation and survival. Deregulated Notch3 signalling has also been shown to promote leukemogenesis in transgenic mice, but the targets of Notch3 in human T-ALL cells remain poorly characterized. Here, we show that Notch3 controls levels of mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1). In a model of T-ALL cell dormancy, both Notch3 activation and MKP-1 expression were upregulated in aggressive compared with dormant tumors, and this inversely correlated with the levels of phosphorylated p38 and extracellular signal-regulated kinase1/2 (ERK1/2) MAPKs, two canonical MKP-1 targets. We demonstrate that MKP-1 protein levels are regulated by Notch3 in T-ALL cell lines because its silencing by RNA interference or treatment with γ-secretase inhibitors induced strong MKP-1 reduction whereas activation of Notch3 signalling had the opposite effect. Furthermore, MKP-1 has an important role in T-ALL cell survival because its attenuation by short hairpin RNA significantly increased cell death under stress conditions. This protective function has a key role in vivo, as MKP-1-deficient cells showed impaired tumorigenicity. These results elucidate a novel mechanism downstream of Notch3 that controls the survival of T-ALL cells.


Gene Therapy | 1998

Pseudotyping of Moloney leukemia virus-based retroviral vectors with simian immunodeficiency virus envelope leads to targeted infection of human CD4+ lymphoid cells.

Stefano Indraccolo; Sonia Minuzzo; Fiorella Feroli; F Mammano; Francesca Calderazzo; Luigi Chieco-Bianchi; Alberto Amadori

In view of our recent findings that a truncated form of the envelope (Env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) was efficiently incorporated into MoMLV particles, we studied the generation of Moloney murine leukemia virus (MoMLV)/simian immunodeficiency virus (SIV) pseudotypes. Unlike HIV-1, both the wild-type SIV Env and a truncated form, which lacks most of the cytoplasmic domain of the transmembrane glycoprotein, were incorporated into MoMLV particles and generated infectious retroviral vectors which could transduce CD4+ sMAGI macaque cells. The infection depended on target cell CD4 expression, and was neutralized by both soluble CD4 and sera from SIV-infected macaques. We also observed pseudotype-mediated gene transfer of a green fluorescent protein marker into the CD4+ CEMX174 and C8166 lymphoid cell lines. More importantly, primary human lymphocytes were also successfully transduced ex vivo by MoMLV/SIV pseudotypes, albeit at lower efficiency, and gene transfer was specifically restricted to the CD4+ subset. These findings demonstrate that MoMLV/SIV pseudotypes can be used to transduce cells which are susceptible to SIV infection, and thus might be advantageously employed in animal models for direct in vivo delivery of gene therapy-based approaches.


International Journal of Biological Markers | 1999

Generation of expression plasmids for angiostatin, endostatin and TIMP-2 for cancer gene therapy.

Stefano Indraccolo; Sonia Minuzzo; Eleonora Gola; Walter Habeler; Fabio Carrozzino; Douglas M. Noonan; Adriana Albini; Leonardo Santi; Alberto Amadori; Luigi Chieco-Bianchi

Antiangiogenic therapy may represent a promising approach to cancer treatment. Indeed, the efficacy of endogenous angiogenesis inhibitors, including angiostatin, endostatin and TIMPs, has been demonstrated in many types of solid tumors in animal models. In view of the possible problems associated with long-term administration of inhibitors as recombinant proteins, we propose their delivery as nucleic acids through a gene therapy approach. To this end, eukaryotic expression constructs for murine angiostatin and endostatin as well as human TIMP-2 were generated, and characterized in vitro. All constructs carry the relevant cDNAs under the control of the strong HCMV promoter/enhancer, and cleavable leader signals to allow protein secretion. Expression of the angiogenesis inhibitors was detected by in vitro transcription/translation experiments as well as transfection of 293T cells, followed by Western blotting (WB) or radioimmunoprecipitation analysis of both cell lysates and supernatants (SNs). These constructs might be used for in vivo intramuscular delivery of plasmid DNA and as a set of reagents for the development of retroviral as well as adeno-associated viral (AAV) vectors expressing angiogenesis inhibitors.


AIDS Research and Human Retroviruses | 1999

Frequency of a mutated CCR-5 allele (delta32) among Italian healthy donors and individuals at risk of parenteral HIV infection.

Rita Zamarchi; Stefano Indraccolo; Sonia Minuzzo; Vincenzo Coppola; A. Gringeri; Elena Santagostino; Elisa Vicenzi; Giustina De Silvestro; Roberta Biagiotti; Clara Baldassarre; Luigi Chieco-Bianchi; Alberto Amadori

The aim of this study was to assess the frequency of a truncated allele of the CCR-5 gene (delta32) in Italy, and address its possible role in parenteral HIV transmission, as well as its influence in HIV-associated disease progression. In 371 unrelated seronegative healthy blood donors the delta32 allele frequency was 0.047; this figure was significantly different from those reported in northern America and northern Europe populations. However, delta32 allele frequency in healthy individuals did not differ significantly from that found in 54 seronegative drug users (0.065), 98 seronegative hemophiliacs (0.051), and 81 seropositive hemophiliacs (0.049). Although in seropositive hemophiliacs the wt/delta32 heterozygous genotype was associated with a trend to a slower decline in CD4+ cell counts, its presence did not seem to influence disease progression, as comparable delta32 allele frequency frequencies were found among progressing (0.042) and nonprogressing (0.111) patients. These data do not seem to support a protective role of the delta32 allele in preventing HIV infection through the parenteral route, or in influencing the natural history of the disease in this particular risk category, although the delta32 heterozygous state was associated with lower plasma viremia levels. On the other hand, the finding of non-syncytium-inducing HIV strains in the majority of delta32 heterozygous seropositive patients suggests that its presence could not be a major factor in driving a switch toward more cytopathic, T-tropic HIV strains through selective pressure in coreceptor usage.


Gene Therapy | 2006

Gene therapy of ovarian cancer with IFN-alpha-producing fibroblasts: comparison of constitutive and inducible vectors.

Stefano Indraccolo; L Moserle; Veronica Tisato; Eleonora Gola; Sonia Minuzzo; Valeria Roni; L Persano; Luigi Chieco-Bianchi; Alberto Amadori

Ovarian cancer represents a malignancy suitable for cell and gene therapy approaches owing to its containment within the peritoneal cavity, even at advanced tumor stages. As regulation of transgene expression would be preferable for conducting clinical trials for reasons of safety, we investigated whether intraperitoneal (i.p.) administration of retroviral vector-transduced fibroblasts encoding murine interferon-α (IFN-α) could have therapeutic activity, and compared its effect with the antitumor effects of fibroblasts producing IFN-α under a rapamycin analogue (AP21967)-inducible promoter. Human and murine fibroblasts were recruited into the solid component of transplantable ovarian cancer-grown i.p. in severe combined immunodeficiency mice. Multiple administrations of fibroblasts producing IFN-α in a constitutive manner showed therapeutic efficacy, leading to significant prolongation of survival in the majority of animals, associated with inhibition of tumor angiogenesis. Compared to cells transduced by the constitutive vector, fibroblasts transduced by the inducible vector released twofold higher IFN-α levels in vitro, following induction by AP21967, and production of the cytokine was under pharmacologic control both in vitro and in vivo. However, these cells elicited only modest therapeutic effects in vivo. Overall, these findings indicate that intracavitary IFN-α gene therapy using engineered fibroblasts requires sustained production of IFN-α to achieve durable antitumor effects.

Collaboration


Dive into the Sonia Minuzzo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi Chieco-Bianchi

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Basso

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge