Sónia P. Miguel
University of Beira Interior
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sónia P. Miguel.
Carbohydrate Polymers | 2014
Sónia P. Miguel; Maximiano P. Ribeiro; Hugo Brancal; Paula Coutinho; Ilídio J. Correia
Healing enhancement and pain control are critical issues on wound management. So far, different wound dressings have been developed. Among them, hydrogels are the most applied. Herein, a thermoresponsive hydrogel was produced using chitosan (deacetylation degree 95%) and agarose. Hydrogel bactericidal activity, biocompatibility, morphology, porosity and wettability were characterized by confocal microscopy, MTS assay and SEM. The performance of the hydrogel in the wound healing process was evaluated through in vivo assays, during 21 days. The attained results revealed that hydrogel has a pore size (90-400 μm) compatible with cellular internalization and proliferation. A bactericidal activity was observed for hydrogels containing more than 188 μg/mL of chitosan. The improved healing and the lack of a reactive or a granulomatous inflammatory reaction in skin lesions treated with hydrogel demonstrate its suitability to be used in a near future as a wound dressing.
Materials Science and Engineering: C | 2013
Maximiano P. Ribeiro; Patrícia I. Morgado; Sónia P. Miguel; Paula Coutinho; Ilídio J. Correia
Skin injuries are traumatic events, which are seldom accompanied by complete structural and functional restoration of the original tissue. Different strategies have been developed in order to make the wound healing process faster and less painful. In the present study in vitro and in vivo assays were carried out to evaluate the applicability of a dextran hydrogel loaded with chitosan microparticles containing epidermal and vascular endothelial growth factors, for the improvement of the wound healing process. The carriers morphology was characterized by scanning electron microscopy. Their cytotoxicity profile and degradation by-products were evaluated through in vitro assays. In vivo experiments were also performed to evaluate their applicability for the treatment of skin burns. The wound healing process was monitored through macroscopic and histological analysis. The macroscopic analysis showed that the period for wound healing occurs in animals treated with microparticle loaded hydrogels containing growth factors that were considerably smaller than that of control groups. Moreover, the histological analysis revealed the absence of reactive or granulomatous inflammatory reaction in skin lesions. The results obtained both in vitro and in vivo disclosed that these systems and its degradation by-products are biocompatible, contributed to the re-establishment of skin architecture and can be used in a near future for the controlled delivery of other bioactive agents used in regenerative medicine.
Materials Science and Engineering: C | 2015
I.R. Serra; R. Fradique; M.C.S. Vallejo; Tiago Ruivo Correia; Sónia P. Miguel; Ilídio J. Correia
Recently, bone tissue engineering emerged as a viable therapeutic alternative, comprising bone implants and new personalized scaffolds to be used in bone replacement and regeneration. In this study, biocompatible scaffolds were produced by freeze-drying, using different formulations (chitosan, chitosan/gelatin, chitosan/β-TCP and chitosan/gelatin/β-TCP) to be used as temporary templates during bone tissue regeneration. Sample characterization was performed through attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive spectroscopy analysis. Mechanical characterization and porosity analysis were performed through uniaxial compression test and liquid displacement method, respectively. In vitro studies were also done to evaluate the biomineralization activity and the cytotoxic profile of the scaffolds. Scanning electron and confocal microscopy analysis were used to study cell adhesion and proliferation at the scaffold surface and within their structure. Moreover, the antibacterial activity of the scaffolds was also evaluated through the agar diffusion method. Overall, the results obtained revealed that the produced scaffolds are bioactive and biocompatible, allow cell internalization and show antimicrobial activity against Staphylococcus aureus. Such, make these 3D structures as potential candidates for being used on the bone tissue regeneration, since they promote cell adhesion and proliferation and also prevent biofilm development at their surfaces, which is usually the main cause of implant failure.
European Journal of Pharmaceutics and Biopharmaceutics | 2018
Déborah Simões; Sónia P. Miguel; Maximiano P. Ribeiro; Paula Coutinho; António G. Mendonça; Ilídio J. Correia
Skin and soft tissue infections (SSTIs) have high rates of morbidity and mortality associated. Despite the successful treatment of some SSTIs, those affecting the subcutaneous tissue, fascia, or muscle delay the healing process and can lead to life-threatening conditions. Therefore, more effective treatments are required to deal with such pathological situations. Recently, wound dressings loaded with antimicrobial agents emerged as viable options to reduce wound bacterial colonization and infection, in order to improve the healing process. In this review, an overview of the most prominent antibacterial agents incorporated in wound dressings along with their mode of action is provided. Furthermore, the recent advances in the therapeutic approaches used in the clinic and some future perspectives regarding antibacterial wound dressings are also discussed.
International Journal of Biological Macromolecules | 2016
Daniela Sofia Rodrigues Figueira; Sónia P. Miguel; Kevin Domingos de Sá; Ilídio J. Correia
A bilayered electrospun membrane was produced in this study, using the electrospinning technique, to be applied as a skin substitute. The upper layer of the membrane was comprised by hyaluronic acid and polycaprolactone in order to provide mechanical support and also to act as a physical barrier against external threats. Chitosan and zein were used to produce the bottom layer that was loaded with salicylic acid, in order to confer anti-inflammatory and antimicrobial activity to this layer. The physicochemical properties of the membranes were determined and the obtained results showed that the produced electrospun membrane display an ideal porosity, appropriate mechanical properties, controlled water loss and a suitable salicylic acid release profile. In addition, membranes did not exhibit any toxic effects for human fibroblast cells, since cells were able to adhere, spread and proliferate. Furthermore, no biofilm formation was noticed on membranes surface along the experiments. In conclusion, the gathered data reveal that this electrospun membrane has suitable properties to be used as a wound dressing.
RSC Advances | 2015
Sofia M. Saraiva; Sónia P. Miguel; Maximiano P. Ribeiro; Paula Coutinho; Ilídio J. Correia
In the area of tissue engineering different approaches have been studied, so far, for promoting regeneration or replacement of damaged tissues. Among the different materials developed, hydrogels, due to their biocompatibility and similarities with the native extracellular matrix, have emerged as suitable candidates for being used for different therapeutic purposes. Herein, photocrosslinkable hydrogels, composed by chitosan methacrylamide (ChMA) and gelatin methacrylamide (GelMA) were crosslinked by ultraviolet (UV) light, using Irgacue 2959 as photoinitiator. The morphological, physicochemical and biological properties of the hydrogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nuclear magnetic resonance. The obtained results demonstrated that the developed hydrogels possess suitable properties for being used as 3D constructs on several areas of tissue engineering. Furthermore, these properties may allow their future application as space filling agents or as delivery vehicles of bioactive molecules and cells.
Carbohydrate Polymers | 2017
Patrícia I. Morgado; Sónia P. Miguel; Ilídio J. Correia; Ana Aguiar-Ricardo
During wound healing, an early inflammation can cause an increase of the wound size and the healing process can be considerably belated if a disproportionate inflammatory response occurs. (S)-ibuprofen (IBP), a non-steroidal anti-inflammatory agent, has been used for muscle healing and to treat venous leg ulcers, but its effect in skin wound healing has not been thoroughly studied thus far. Herein, IBP-β-cyclodextrins carriers were designed to customise the release profile of IBP from poly(vinyl alcohol)/chitosan (PVA/CS) dressings in order to promote a faster skin regeneration. The dressings were produced using supercritical carbon dioxide (scCO2)-assisted technique. In vitro IBP release studies showed that β-cyclodextrins allowed a controlled drug release from the hydrogels which is crucial for their application in wound management. Moreover, the in vivo assays revealed that the presence of PVA/CS membranes containing IBP-β-cyclodextrins carriers avoided scab formation and an excessive inflammation, enabling an earlier skin healing.
Carbohydrate Polymers | 2016
Marco P. Carvalho; Elisabete C. Costa; Sónia P. Miguel; Ilídio J. Correia
Two-dimensional (2D) cell culture is the main methodology used for screening anticancer therapeutics. However, these 2D cellular models misrepresent the architecture of native tumors, leading, in some cases, to unsuccessful prediction of cancer cell response to drugs. To overcome such limitations, cell growth in three dimensions (3D) arises as an alternative to reproduce in vitro the cellular arrangement found in tumors. Among the 3D cancer models developed so far, spheroids are the most attractive since these are cellular aggregates that broadly mimic many features of solid tumors affecting humans, like cell-cell interactions. One of the most applied techniques for producing spheroids is the liquid overlay technique, in which cells aggregate due to their limited adhesion to certain biomaterials, usually agarose or agar. Recently, the suitability of hyaluronic acid (HA) for spheroids assembly and HA-cell surface receptor interactions has been investigated. Ergo, this review gathers a summary of different studies where HA-based structures were developed and used for tumor spheroids production in order to be used in vitro as reliable 3D tumor models for therapeutic screening purposes.
Journal of Nanoparticle Research | 2014
Edgar Silva; Sofia M. Saraiva; Sónia P. Miguel; Ilídio J. Correia
Fungal infections affecting human beings have increased during the last years and the currently available treatments, when administered for long periods, trigger microbial resistance. Such demands the development of new viable therapeutic alternatives. Silver is known since the antiquity by its antimicrobial properties and, herein, it was used to produce two types of nanoparticles (NPs), uncoated and coated with polyvinylpyrrolidone (PVP), which were aimed to be used in fungal infection treatment. NPs properties were characterized by Transmission electron microscopy, X-ray diffraction, UV–Vis, Dynamic light scattering, Fourier transform infrared, and Energy-dispersive X-ray spectroscopy. Furthermore, in vitro studies were also performed to evaluate NPs cytotoxic profile and antifungal activity. The results obtained revealed that the produced nanoparticles are biocompatible and have a good potential for being used in the treatment of common skin infections caused by Trichophyton rubrum and Trichophyton mentagrophytes, being PVP-coated silver NPs the most suitable ones.
Polymers | 2017
Sónia P. Miguel; Maximiano P. Ribeiro; Paula Coutinho; Ilídio J. Correia
Today, none of the wound dressings available on the market is fully capable of reproducing all the features of native skin. Herein, an asymmetric electrospun membrane was produced to mimic both layers of skin. It comprises a top dense layer (manufactured with polycaprolactone) that was designed to provide mechanical support to the wound and a bottom porous layer (composed of chitosan and Aloe Vera) aimed to improve the bactericidal activity of the membrane and ultimately the healing process. The results obtained revealed that the produced asymmetric membranes displayed a porosity, wettability, as well as mechanical properties similar to those presented by the native skin. Fibroblast cells were able to adhere, spread, and proliferate on the surface of the membranes and the intrinsic structure of the two layers of the membrane is capable of avoiding the invasion of microorganisms while conferring bioactive properties. Such data reveals the potential of these asymmetric membranes, in the near future, to be applied as wound dressings.