Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia Piccinin is active.

Publication


Featured researches published by Sonia Piccinin.


PLOS ONE | 2013

Inflammation Subverts Hippocampal Synaptic Plasticity in Experimental Multiple Sclerosis

Robert Nisticò; Dalila Mango; Georgia Mandolesi; Sonia Piccinin; Nicola Berretta; Marco Pignatelli; Marco Feligioni; Alessandra Musella; Antonietta Gentile; Francesco Mori; Giorgio Bernardi; Ferdinando Nicoletti; Nicola B. Mercuri; Diego Centonze

Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP) induction was favored over long-term depression (LTD) in EAE, as shown by a significant rightward shift in the frequency–synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β) perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.


The Journal of Neuroscience | 2014

Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome

Marco Pignatelli; Sonia Piccinin; Gemma Molinaro; Luisa Di Menna; Barbara Riozzi; Milena Cannella; Marta Motolese; Gisella Vetere; Maria Vincenza Catania; Giuseppe Battaglia; Ferdinando Nicoletti; Robert Nisticò; Valeria Bruno

Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3Am−/p+ mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity

Carla Nasca; Danielle Zelli; Benedetta Bigio; Sonia Piccinin; Sergio Scaccianoce; Robert Nisticò; Bruce S. McEwen

Significance Chronic stress alters the hippocampal responses to familiar and novel stressors, behaviorally, physiologically, and epigenetically. In the aftermath of chronic stress in WT mice and in mice with a BDNF loss-of-function allele without any applied stress, there is a window of plasticity that allows familiar and novel experiences to alter anxiety- and depressive-like behaviors, reflected also in electrophysiological changes in the dentate gyrus (DG) in vitro. A consistent biomarker of mood-related behaviors in DG is reduced type 2 metabotropic glutamate (mGlu2), which regulates the release of glutamate. Within this window, familiar stress rapidly and epigenetically up-regulates mGlu2 by a P300-driven histone H3 lysine 27 acetylation and improves mood behaviors. This transient epigenetic plasticity may be useful for treatment of stress-related disorders where dysregulaton of glutamate is involved. Excitatory amino acids play a key role in both adaptive and deleterious effects of stressors on the brain, and dysregulated glutamate homeostasis has been associated with psychiatric and neurological disorders. Here, we elucidate mechanisms of epigenetic plasticity in the hippocampus in the interactions between a history of chronic stress and familiar and novel acute stressors that alter expression of anxiety- and depressive-like behaviors. We demonstrate that acute restraint and acute forced swim stressors induce differential effects on these behaviors in naive mice and in mice with a history of chronic-restraint stress (CRS). They reveal a key role for epigenetic up- and down-regulation of the putative presynaptic type 2 metabotropic glutamate (mGlu2) receptors and the postsynaptic NR1/NMDA receptors in the hippocampus and particularly in the dentate gyrus (DG), a region of active neurogenesis and a target of antidepressant treatment. We show changes in DG long-term potentiation (LTP) that parallel behavioral responses, with habituation to the same acute restraint stressor and sensitization to a novel forced-swim stressor. In WT mice after CRS and in unstressed mice with a BDNF loss-of-function allele (BDNF Val66Met), we show that the epigenetic activator of histone acetylation, P300, plays a pivotal role in the dynamic up- and down-regulation of mGlu2 in hippocampus via histone-3-lysine-27-acetylation (H3K27Ac) when acute stressors are applied. These hippocampal responses reveal a window of epigenetic plasticity that may be useful for treatment of disorders in which glutamatergic transmission is dysregulated.


Molecular Neurobiology | 2012

Targeting Synaptic Dysfunction in Alzheimer’s Disease Therapy

Robert Nisticò; Marco Pignatelli; Sonia Piccinin; Nicola B. Mercuri; Graham L. Collingridge

In the past years, major efforts have been made to understand the genetics and molecular pathogenesis of Alzheimer’s disease (AD), which has been translated into extensive experimental approaches aimed at slowing down or halting disease progression. Advances in transgenic (Tg) technologies allowed the engineering of different mouse models of AD recapitulating a range of AD-like features. These Tg models provided excellent opportunities to analyze the bases for the temporal evolution of the disease. Several lines of evidence point to synaptic dysfunction as a cause of AD and that synapse loss is a pathological correlate associated with cognitive decline. Therefore, the phenotypic characterization of these animals has included electrophysiological studies to analyze hippocampal synaptic transmission and long-term potentiation, a widely recognized cellular model for learning and memory. Transgenic mice, along with non-Tg models derived mainly from exogenous application of Aβ, have also been useful experimental tools to test the various therapeutic approaches. As a result, numerous pharmacological interventions have been reported to attenuate synaptic dysfunction and improve behavior in the different AD models. To date, however, very few of these findings have resulted in target validation or successful translation into disease-modifying compounds in humans. Here, we will briefly review the synaptic alterations across the different animal models and we will recapitulate the pharmacological strategies aimed at rescuing hippocampal plasticity phenotypes. Finally, we will highlight intrinsic limitations in the use of experimental systems and related challenges in translating preclinical studies into human clinical trials.


Neuromolecular Medicine | 2014

Interleukin-1β Promotes Long-Term Potentiation in Patients with Multiple Sclerosis

Francesco Mori; Robert Nisticò; Georgia Mandolesi; Sonia Piccinin; Dalila Mango; Hajime Kusayanagi; Nicola Berretta; Alessandra Bergami; Antonietta Gentile; Alessandra Musella; Carolina G. Nicoletti; Ferdinando Nicoletti; Fabio Buttari; Nicola B. Mercuri; Gianvito Martino; Roberto Furlan; Diego Centonze

The immune system shapes synaptic transmission and plasticity in experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis (MS). These synaptic adaptations are believed to drive recovery of function after brain lesions, and also learning and memory deficits and excitotoxic neurodegeneration; whether inflammation influences synaptic plasticity in MS patients is less clear. In a cohort of 59 patients with MS, we found that continuous theta-burst transcranial magnetic stimulation did not induce the expected long-term depression (LTD)-like synaptic phenomenon, but caused persisting enhancement of brain cortical excitability. The amplitude of this long-term potentiation (LTP)-like synaptic phenomenon correlated with the concentration of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the cerebrospinal fluid. In MS and EAE, the brain and spinal cord are typically enriched of CD3+ T lymphocyte infiltrates, which are, along with activated microglia and astroglia, a major cause of inflammation. Here, we found a correlation between the presence of infiltrating T lymphocytes in the hippocampus of EAE mice and synaptic plasticity alterations. We observed that T lymphocytes from EAE, but not from control mice, release IL-1β and promote LTP appearance over LTD, thereby mimicking the facilitated LTP induction observed in the cortex of MS patients. EAE-specific T lymphocytes were able to suppress GABAergic transmission in an IL-1β-dependent manner, providing a possible synaptic mechanism able to lower the threshold of LTP induction in MS brains. Moreover, in vivo blockade of IL-1β signaling resulted in inflammation and synaptopathy recovery in EAE hippocampus. These data provide novel insights into the pathophysiology of MS.


The Journal of Neuroscience | 2013

Synaptic Plasticity and PDGF Signaling Defects Underlie Clinical Progression in Multiple Sclerosis

Francesco Mori; Silvia Rossi; Sonia Piccinin; Caterina Motta; Dalila Mango; Hajime Kusayanagi; Alessandra Bergami; Valeria Studer; Carolina G. Nicoletti; Fabio Buttari; Francesca Barbieri; Nicola B. Mercuri; Gianvito Martino; Roberto Furlan; Robert Nisticò; Diego Centonze

Neuroplasticity is essential to prevent clinical worsening despite continuing neuronal loss in several brain diseases, including multiple sclerosis (MS). The precise nature of the adaptation mechanisms taking place in MS brains, ensuring protection from disability appearance and accumulation, is however unknown. Here, we explored the hypothesis that long-term synaptic potentiation (LTP), potentially able to minimize the effects of neuronal loss by providing extra excitation of denervated neurons, is the most relevant form of adaptive plasticity in stable MS patients, and it is disrupted in progressing MS patients. We found that LTP, explored by means of transcranial magnetic theta burst stimulation over the primary motor cortex, was still possible, and even favored, in stable relapsing-remitting (RR-MS) patients, whereas it was absent in individuals with primary progressive MS (PP-MS). We also provided evidence that platelet-derived growth factor (PDGF) plays a substantial role in favoring both LTP and brain reserve in MS patients, as this molecule: (1) was reduced in the CSF of PP-MS patients, (2) enhanced LTP emergence in hippocampal mouse brain slices, (3) was associated with more pronounced LTP in RR-MS patients, and (4) was associated with the clinical compensation of new brain lesion formation in RR-MS. Our results show that brain plasticity reserve, in the form of LTP, is crucial to contrast clinical deterioration in MS. Enhancing PDGF signaling might represent a valuable treatment option to maintain brain reserve and to attenuate the clinical consequences of neuronal damage in the progressive phases of MS and in other neurodegenerative disorders.


Neuromolecular Medicine | 2012

Insulin receptor β-subunit haploinsufficiency impairs hippocampal late-phase ltp and recognition memory

Robert Nisticò; Virve Cavallucci; Sonia Piccinin; Simone Macrì; Marco Pignatelli; Bisan Mehdawy; Fabio Blandini; Giovanni Laviola; Davide Lauro; Nicola B. Mercuri; Marcello D’Amelio

The insulin receptor (IR) is a protein tyrosine kinase playing a pivotal role in the regulation of peripheral glucose metabolism and energy homoeostasis. IRs are also abundantly distributed in the cerebral cortex and hippocampus, where they regulate synaptic activity required for learning and memory. As the major anabolic hormone in mammals, insulin stimulates protein synthesis partially through the activation of the PI3K/Akt/mTOR pathway, playing fundamental roles in neuronal development, synaptic plasticity and memory. Here, by means of a multidisciplinary approach, we report that long-term synaptic plasticity and recognition memory are impaired in IR β-subunit heterozygous mice. Since IR expression is diminished in type-2 diabetes as well as in Alzheimer’s disease (AD) patients, these data may provide a mechanistic link between insulin resistance, impaired synaptic transmission and cognitive decline in humans with metabolic disorders.


Cell Death & Differentiation | 2013

ProNGF\NGF imbalance triggers learning and memory deficits, neurodegeneration and spontaneous epileptic-like discharges in transgenic mice

C Tiveron; Luisa Fasulo; S Capsoni; Francesca Malerba; Silvia Marinelli; Francesca Paoletti; Sonia Piccinin; Raffaella Scardigli; Gianluca Amato; Rossella Brandi; P Capelli; S D'Aguanno; Fulvio Florenzano; F La Regina; A Lecci; A Manca; Giovanni Meli; L Pistillo; Nicola Berretta; Robert Nisticò; Flaminia Pavone; Antonino Cattaneo

ProNGF, the precursor of mature nerve growth factor (NGF), is the most abundant form of NGF in the brain. ProNGF and mature NGF differ significantly in their receptor interaction properties and in their bioactivity. ProNGF increases markedly in the cortex of Alzheimer’s disease (AD) brains and proNGF\NGF imbalance has been postulated to play a role in neurodegeneration. However, a direct proof for a causal link between increased proNGF and AD neurodegeneration is lacking. In order to evaluate the consequences of increased levels of proNGF in the postnatal brain, transgenic mice expressing a furin cleavage-resistant form of proNGF, under the control of the neuron-specific mouse Thy1.2 promoter, were derived and characterized. Different transgenic lines displayed a phenotypic gradient of neurodegenerative severity features. We focused the analysis on the two lines TgproNGF#3 and TgproNGF#72, which shared learning and memory impairments in behavioral tests, cholinergic deficit and increased Aβ-peptide immunoreactivity. In addition, TgproNGF#3 mice developed Aβ oligomer immunoreactivity, as well as late diffuse astrocytosis. Both TgproNGF lines also display electrophysiological alterations related to spontaneous epileptic-like events. The results provide direct evidence that alterations in the proNGF/NGF balance in the adult brain can be an upstream driver of neurodegeneration, contributing to a circular loop linking alterations of proNGF/NGF equilibrium to excitatory/inhibitory synaptic imbalance and amyloid precursor protein (APP) dysmetabolism.


Biological Psychiatry | 2014

Cognitive Impairment and Dentate Gyrus Synaptic Dysfunction in Experimental Parkinsonism

Alessandra Bonito-Oliva; Marco Pignatelli; Giada Spigolon; Takashi Yoshitake; Stefanie Seiler; Francesco Longo; Sonia Piccinin; Jan Kehr; Nicola B. Mercuri; Robert Nisticò; Gilberto Fisone

BACKGROUND Parkinsons disease (PD) is characterized by the progressive degeneration of the nigrostriatal dopaminergic pathway and the emergence of rigidity, tremor, and bradykinesia. Accumulating evidence indicates that PD is also accompanied by nonmotor symptoms including cognitive deficits, often manifested as impaired visuospatial memory. METHODS We studied cognitive performance and synaptic plasticity in a mouse model of PD, characterized by partial lesion of the dopaminergic and noradrenergic inputs to striatum and hippocampus. Sham- and 6-hydroxydopamine-lesioned mice were subjected to the novel object recognition test, and long-term potentiation was examined in the dentate gyrus and CA1 regions of the hippocampus. RESULTS Bilateral 6-hydroxydopamine lesion reduced long-term but not short-term novel object recognition and decreased long-term potentiation specifically in the dentate gyrus. These abnormalities did not depend on the loss of noradrenaline but were abolished by the antiparkinsonian drug, L-DOPA, or by SKF81297, a dopamine D1-type receptor agonist. In contrast, activation of dopamine D2-type receptors did not modify the effects produced by the lesion. Blockade of the extracellular signal-regulated kinases prevented the ability of SKF81297 to rescue novel object recognition and long-term potentiation. CONCLUSIONS These findings show that partial dopamine depletion leads to impairment of long-term recognition memory accompanied by abnormal synaptic plasticity in the dentate gyrus. They also demonstrate that activation of dopamine D1 receptors corrects these deficits, through a mechanism that requires intact extracellular signal-regulated kinases signaling.


Translational Psychiatry | 2014

Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

Francesco d’Errico; Robert Nisticò; A. Di Giorgio; Marta Squillace; Daniela Vitucci; Alberto Galbusera; Sonia Piccinin; Dalila Mango; Leonardo Fazio; Silvia Middei; Silvestro Trizio; Nicola B. Mercuri; M A Teule; Diego Centonze; Alessandro Gozzi; Giuseppe Blasi; Alessandro Bertolino; Alessandro Usiello

D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans.

Collaboration


Dive into the Sonia Piccinin's collaboration.

Top Co-Authors

Avatar

Robert Nisticò

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Nicola B. Mercuri

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Dalila Mango

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diego Centonze

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marco Feligioni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Marco Pignatelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesco Mori

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Carolina G. Nicoletti

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Chiara Schepisi

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge