Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sónia Simões is active.

Publication


Featured researches published by Sónia Simões.


Nanotechnology | 2010

In situ TEM study of grain growth in nanocrystalline copper thin films.

Sónia Simões; R Calinas; M.T. Vieira; Manuel F. Vieira; Paulo J. Ferreira

Nanocrystalline metals demonstrate a range of fascinating properties, including high levels of mechanical strength. However, as these materials are exposed to high temperatures, it is critical to determine the grain size evolution, as this process can drastically change the mechanical properties. In this work, nanocrystalline sputtered Cu thin films with 43 +/- 2 nm grain size were produced by dc-magnetron sputtering. Specimens were subsequently annealed in situ in a transmission electron microscope at 100, 300 and 500 degrees C. Not only was grain growth more evident at 500 degrees C but also the fraction of twins found. An analysis of grain growth kinetics revealed a time exponent of 3 and activation energy of 35 kJ mol(-1). This value is explained by the high energy stored in the form of dislocation, grain boundaries and twin boundaries existing in nanocrystalline copper, as well as the high probability for atoms to move across grains in nanocrystalline materials.


Advanced Materials Research | 2008

Joining of Superalloys to Intermetallics Using Nanolayers

A.S. Ramos; M. Teresa Vieira; Sónia Simões; Filomena Viana; Manuel F. Vieira

Joining nickel based superalloys to gamma-TiAl intermetallic alloys will contribute to a more efficient application of these advanced materials, particularly in extreme environments. In this study, Inconel alloy and gamma-TiAl are joined using as filler alternated nanolayer thin films deposited onto each base material. The nanolayers consisted in Ni/Al exothermic reactive multilayer thin films with periods of 5 and 14 nm deposited by d.c. magnetron sputtering in order to improve the adhesion to the substrates and to avoid the reaction between Ni and Al. Diffusion bonding experiments with multilayer coated alloys were performed under vacuum at 800°C by applying 50 MPa during 1h. Bonding was achieved in large areas of the centre of the joints where regions without cracks or pores were produced, especially when using multilayer thin films with a 14 nm modulation period.


Microscopy and Microanalysis | 2015

TEM and HRTEM characterization of TiAl diffusion bonds using Ni/Al nanolayers.

Sónia Simões; Filomena Viana; A.S. Ramos; M.T. Vieira; Manuel F. Vieira

Diffusion bonding of TiAl alloys can be enhanced by the use of reactive nanolayer thin films as interlayers. Using these interlayers, it is possible to reduce the conventional bonding conditions (temperature, time, and pressure) and obtain sound and reliable joints. The microstructural characterization of the diffusion bond interfaces is a fundamental step toward understanding and identifying the bonding mechanisms and relating them to the strength of the joints. The interface of TiAl samples joined using Ni/Al nanolayers was characterized by transmission electron microscopy and scanning transmission electron microscopy. Microstructural characterization of the bond revealed that the interfaces consist of several thin layers of different composition and grain size (nanometric and micrometric). The bonding temperature (800, 900, or 1,000°C) determines the grain size and thickness of the layers present at the interface. Phase identification by high-resolution transmission electron microscopy combined with fast Fourier transform and electron energy-loss spectroscopy analyses reveals the presence of several intermetallic compounds: AlTiNi, NiAl, and Al2TiNi. For bonds produced at 800 and 900°C, nanometric grains of Ti were detected at the center of the interface.


Defect and Diffusion Forum | 2010

Reaction-Assisted Diffusion Bonding of Advanced Materials

A.S. Ramos; M. Teresa Vieira; Sónia Simões; Filomena Viana; Manuel F. Vieira

The aim of this work is to join -TiAl intermetallics to Ni based superalloys by solid state diffusion bonding. The surface of the -TiAl alloys and Ni superalloys to be joined was prepared by magnetron sputtering with a few microns thick Ni/Al reactive multilayer thin films with nanometric modulation periods. Sound joining without cracks or pores is achieved along the central region of the bond, especially at 800°C and when a 14 nm period Ni/Al film is used as filler material. During the diffusion bonding experiments interdiffusion and reaction inside the Ni/Al multilayer thin film and between the interlayer film and the base materials is promoted with the formation of intermetallic phases. The final reaction product in the multilayer films is the B2-NiAl intermetallic phase. The interfacial diffusion layers between the base materials and the multilayer films should correspond to: 3-NiTiAl and 4-Ni2TiAl phases from the -TiAl side; Ni-rich aluminide and -phase from the Inconel side. These intermetallic phases are responsible for the hardness increase observed on the diffusion layers.


Microscopy and Microanalysis | 2010

TEM characterization of As-deposited and annealed Ni/Al multilayer thin film.

Sónia Simões; Filomena Viana; A.S. Ramos; M.T. Vieira; Manuel F. Vieira

Reactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


Microscopy and Microanalysis | 2016

Microstructural Characterization of Aluminum-Carbon Nanotube Nanocomposites Produced Using Different Dispersion Methods.

Sónia Simões; Filomena Viana; Marcos A.L. Reis; Manuel F. Vieira

This research focuses on characterization of the impact of dispersion methods on aluminum-carbon nanotubes (Al-CNTs) nanocomposite structure. Nanocomposites were produced by a conventional powder metallurgy process after the dispersion of the CNTs on the Al powders, using two approaches: (1) the dispersion of CNTs and mixture with Al powders were performed in a single step by ultrasonication; and (2) the CNTs were previously untangled by ultrasonication and then mixed with Al powders by ball milling. Microstructural characterization of Al-CNT nanocomposites was performed by optical microscopy, scanning and transmission electron microscopy, electron backscatter diffraction, and high-resolution transmission electron microscopy (HRTEM). Microstructural characterization revealed that the use of ball milling for mixing CNTs with Al powders promoted the formation of CNT clusters of reduced size, more uniformly dispersed in the matrix, and a nanocomposite of smaller grain size. However, the results of HRTEM and Raman spectroscopy show that ball milling causes higher damage to the CNT structure. The strengthening effect of the CNT is attested by the increase in hardness and tensile strength of the nanocomposites.


Journal of Materials Engineering and Performance | 2016

Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering

Sónia Simões; A.S. Ramos; Filomena Viana; O. Emadinia; M.T. Vieira; Manuel F. Vieira

Ni/Al multilayers are known to transform into NiAl in a highly exothermic and self-sustaining reaction. The fact that this reaction has a high heat release rate and can be triggered by an external impulse, are reasons why it has already attracted much research attention. There is a huge potential in the use of Ni/Al multilayers as a controllable and localized heat source for joining temperature-sensitive materials such as microelectronic components. The heat released and the phases resulting from the reaction of Ni and Al multilayers depend on the production methods, their composition, as well as the bilayer thickness and annealing conditions. The present research aims to explore the influence of these variables on the reaction of different multilayers, namely those produced by accumulative roll bonding (ARB) and sputtering. Structural evolution of Ni/Al multilayers with temperature was studied by differential scanning calorimetry, x-ray diffraction and scanning electron microscopy. Phase evolution, heat release rate and NiAl final grain size are controlled by the ignition method used to trigger the reaction of Ni and Al. The potential use of these multilayers in the diffusion bonding of TiAl was analyzed. The ARB multilayers allow the production of joints with higher strength than the joints produced with commercial multilayers (NanoFoil®) produced by sputtering. However, the formation of brittle intermetallic phases (Ni3Al, Ni2Al3 and NiAl3) compromises the mechanical properties of the joint.


Materials Science Forum | 2008

Effect of Annealing Conditions on the Grain Size of Nanocrystalline Copper Thin Films

Sónia Simões; R. Calinas; Paulo J. Ferreira; M. Teresa Vieira; Filomena Viana; Manuel F. Vieira

Nanocrystalline metals demonstrate a broad range of fascinating mechanical properties at the nanoscale, namely a significant increase in hardness and superior yield stress. In this regard, understanding grain growth in nanocrystalline metals is crucial, particularly because nano size grains are characterized by a high curvature, which results in a high driving force for grain growth. In this work, the effect of annealing conditions on grain size of copper nanocrystalline thin films was investigated. The nanocrystalline copper thin films were first deposited by d.c. magnetron sputtering on a copper substrate. The specimens were then annealed in vacuum at 100, 300 and 500°C from 10 minutes to 5 hours. Transmission electron microscopy observations revealed that the as-deposited thin films have a bimodal grain size distribution; an average grain size of 43±2nm and the presence of nanotwins. Abnormal grain growth was observed for some samples annealed. Increasing the annealing time induced significant grain growth and promoted twin formation in the larger grains. Finally, the hardness of these nanocrystalline Cu thin films was determined using atomic force microscope. The relation between mechanical properties, annealing conditions and grain size was analyzed.


Microscopy and Microanalysis | 2009

Intermixing in Ni/Al multilayer thin films

Sónia Simões; Filomena Viana; A.S. Ramos; M.T. Vieira; Manuel F. Vieira

Self-propagating exothermic reactions are known to occur in multilayer films with alternating layers of a transition metal and a light element. The high velocity of these reactions, associated with high heat release rate, convert these systems in a unique heat source. The possibility of tailoring such a heat source to meet the needs of a particular process is very attractive to applications such as brazing or solid-state diffusion bonding. The solid state reactions occurring in Ni and Al multilayer thin films, produced by d.c. magnetron sputtering with bilayer thickness (period) of 5, 14 and 30 nm, were studied by differential scanning calorimetry (DSC). DSC results demonstrated that reaction temperature and heat released increase with the period of Ni/Al multilayer thin films.


Microscopy and Microanalysis | 2008

TEM and SEM in-situ annealing of nanocrystalline copper thin films

Sónia Simões; R. Calinas; Paulo J. Ferreira; Filomena Viana; M.T. Vieira; Manuel F. Vieira

Materials mechanical resistance is known to depend on the size of structural features, accordingly to the familiar HallPetch equation. For the nanometer range of grain sizes, this relationship breaks down and a change of the grain size exponent is needed to satisfy this dependency. Nevertheless, the superior strength of the nanocrystalline material relays on the small dimension of its grains. Characterization of the thermal stability of these materials becomes relevant since a large fraction of atoms are in the grain boundaries and, as a result, its structure posses a large excess of energy that promotes grain growth. Grain growth in nanocrystalline metals has been observed well below the temperatures needed to promote grain growth in coarse grained materials; in some cases, even at room temperature. From this perspective, the study of grain growth in nanocrystalline metals is crucial for the development of new nanocrystalline materials with outstanding mechanical properties. There are many studies that propose models to explain the mechanism of nucleation and growth of annealing twins in F.C.C. materials. In-situ TEM and SEM techniques are invaluable for understanding and characterizing dynamic microstructural changes like nucleation and growth of grains and twins. This is an important observation because twinning affects the properties of materials and so is essential to comprehend the mechanism of twin formation. Other advantage of the in-situ TEM technique is the study of grain growth in ultra fine film with a thickness in the range of 50 to 100 nm. With these techniques, the mechanisms and kinetics of grain growth in nanocrystalline thin films can be observed and studied in real time.

Collaboration


Dive into the Sónia Simões's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.T. Vieira

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Marcos A.L. Reis

Federal University of Pará

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paulo J. Ferreira

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge