Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia Trombino is active.

Publication


Featured researches published by Sonia Trombino.


BioMed Research International | 2014

Antioxidant and Anti-Inflammatory Effects of Selected Natural Compounds Contained in a Dietary Supplement on Two Human Immortalized Keratinocyte Lines

Elena Fasano; Simona Serini; Nadia Mondella; Sonia Trombino; Leonardo Celleno; Paola Lanza; Achille Cittadini; Gabriella Calviello

Several advantages may derive from the use of dietary supplements containing multiple natural antioxidants and/or anti-inflammatory agents. At present, however, there is scarce information on the properties and potential of combined supplements. To fill the gap, the antioxidant and anti-inflammatory activities exerted by a combination of seven natural components (coenzyme Q10, krill oil, lipoic acid, resveratrol, grape seed oil, α-tocopherol, and selenium) contained in a dietary supplement used for the prevention of skin disorders were investigated in vitro. Each component was administered, alone or in combination, to human keratinocytes, and the inhibition of Reactive Oxygen Species production and lipid peroxidation as well as the ability to reduce inflammatory cytokine secretion and to modulate Nuclear Factor-κB pathway was evaluated. The combination exhibited high antioxidant activity and in specific conditions the combinations efficiency was higher than that of the most powerful components administered individually. Moreover, the combination showed remarkable anti-inflammatory properties. It reduced more efficiently than each component the secretion of Monocyte Chemoattractant Protein-1, a crucial cytokine for the development of chronic inflammation in skin, and inhibited Nuclear Factor-κB molecular pathway. Overall, our findings suggest that the combined formulation may have the potential to powerfully inhibit oxidative stress and inflammation at skin level.


Colloids and Surfaces B: Biointerfaces | 2009

Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of β-carotene and α-tocopherol

Sonia Trombino; Roberta Cassano; Rita Muzzalupo; Attilio Pingitore; Erika Cione; Nevio Picci

UVA exposure induces DNA damage that could result in skin carcinogenesis. Antioxidants are usually employed as protective agents to avoid this problem: in particular, both beta-carotene and alpha-tocopherol can protect the skin against UVA-induced damage. It is well known that the photochemical instability of these compounds has been a limiting factor for their applications to protect skin. In this study, stearyl ferulate-based solid lipid nanoparticles (SF-SLNs), as vehicles for beta-carotene and alpha-tocopherol, were formulated to improve the stability of these compounds. The SF-SLNs were characterized for entrapment efficiency, size and shape together with their cytotoxicity and capability to inhibit lipid peroxidation. After treatment with a pro-oxidant and/or exposition to sunlight the antioxidants entrapped in SF-SLNs were extremely stable. The results highlighted how SF-SLNs represent a suitable vehicle for beta-carotene and alpha-tocopherol stabilizing and protecting them from degradation. A dermatological formulation in order to prevent skin damages is, therefore, suggested.


Journal of Nutritional Biochemistry | 2011

Lycopene prevention of oxysterol-induced proinflammatory cytokine cascade in human macrophages: inhibition of NF-κB nuclear binding and increase in PPARγ expression.

Paola Palozza; Rossella Emanuela Simone; Assunta Catalano; Giovanni Monego; Angelina Barini; Maria Cristina Mele; Nadia Parrone; Sonia Trombino; Nevio Picci; Franco O. Ranelletti

It is now well accepted that oxysterols play important roles in the formation of atherosclerotic plaque, involving cytotoxic, pro-oxidant and proinflammatory processes. It has been recently suggested that tomato lycopene may act as a preventive agent in atherosclerosis, although the exact mechanism of such a protection is not clarified. The main aim of this study was to investigate whether lycopene is able to counteract oxysterol-induced proinflammatory cytokines cascade in human macrophages, limiting the formation of atherosclerotic plaque. Therefore, THP-1 macrophages were exposed to two different oxysterols, such as 7-keto-cholesterol (4-16 μM) and 25-hydroxycholesterol (2-4 μM), alone and in combination with lycopene (0.5-2 μM). Both oxysterols enhanced pro-inflammatory cytokine [interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor α) secretion and mRNA levels in a dose-dependent manner, although at different extent. These effects were associated with an increased reactive oxygen species (ROS) production through an enhanced expression of NAD(P)H oxidase. Moreover, a net increment of phosphorylation of extracellular regulated kinase 1/2, p-38 and Jun N-terminal kinase and of nuclear factor kB (NF-κB) nuclear binding was observed. Lycopene prevented oxysterol-induced increase in pro-inflammatory cytokine secretion and expression. Such an effect was accompanied by an inhibition of oxysterol-induced ROS production, mitogen-activated protein kinase phosphorylation and NF-κB activation. The inhibition of oxysterol-induced cytokine stimulation was also mimicked by the specific NF-κB inhibitor pyrrolidine dithiocarbamate. Moreover, the carotenoid increased peroxisome proliferator-activated receptor γ levels in THP-1 macrophages. Taken all together, these data bring new information on the anti-atherogenic properties of lycopene, and on its mechanisms of action in atherosclerosis prevention.


Apoptosis | 2008

Docosahexaenoic acid induces apoptosis in lung cancer cells by increasing MKP-1 and down-regulating p-ERK1/2 and p-p38 expression

Simona Serini; Sonia Trombino; Francesco Oliva; Elisabetta Piccioni; Giovanni Monego; Federica Resci; Alma Boninsegna; Nevio Picci; Franco O. Ranelletti; Gabriella Calviello

Different agents able to modulate apoptosis have been shown to modify the expression of the MAP-kinase-phosphatase-1 (MKP-1). The expression of this phosphatase has been considered a potential positive prognostic factor in lung cancer, and smoke was shown to reduce the levels of MKP-1 in ferret lung. Our aim was to assess whether the n-3 polyunsaturated fatty acid docosahexaenoic acid (DHA), known to inhibit the growth of several cancer cells mainly inducing apoptosis, may exert pro-apoptotic effect in lung cancer cells by modifying MKP-1 expression. We observed that DHA increased MKP-1 protein and mRNA expression and induced apoptosis in different lung cancer cell lines (mink Mv1Lu adenocarcinoma cells, human A549 adenocarcinoma and human BEN squamous carcinoma cells). We inhibited the pro-apoptotic effect of DHA by treating the cells with the phosphatase inhibitor Na3VO4 or by silencing the MKP-1 gene with the specific siRNA. This finding demonstrated that the induction of apoptosis by DHA involved a phosphatase activity, specifically that of MKP-1. DHA reduced also the levels of the phosphorylated MAP-kinases, especially ERK1/2 and p38. Such an effect was not observed when the MKP-1 gene was silenced. Altogether, the data provide evidence that the DHA-induced overexpression of MKP-1 and the resulting decrease of MAP-kinase phosphorylation by DHA may underlie the pro-apoptotic effect of this fatty acid in lung cancer cells. Moreover, they support the hypothesis that DHA may exert chemopreventive action in lung cancer.


European Journal of Pharmaceutics and Biopharmaceutics | 2009

A novel dextran hydrogel linking trans-ferulic acid for the stabilization and transdermal delivery of vitamin E

Roberta Cassano; Sonia Trombino; Rita Muzzalupo; Lorena Tavano; Nevio Picci

Long-term exposure of the skin to UV light causes degenerative effects, which can be minimized by using antioxidant formulations. The major challenge in this regard is that a significant amount of antioxidant should reach at the site for effective photoprotection. However, barrier properties of the skin limit their use. In the present study, vitamin E (alpha-tocopherol) was loaded into a dextran hydrogel containing ferulic moieties, covalently linked, to improve its topical delivery, and also to increase its relative poor stability, which is due to direct exposure to UV light. Methacrylic groups were first introduced onto the dextran polymer backbones, then the obtained methacrylated dextran was copolymerized with aminoethyl methacrylate, and subsequently esterificated with trans-ferulic acid. The new biopolymer was characterized by Fourier transform infrared spectroscopy. The values of content of phenolic groups were determined. Its ability in inhibiting lipid peroxidation in rat liver microsomal membranes induced in vitro by a source of free radicals, that is tert-butyl hydroperoxide, was studied. Hydrogel was also characterized for swelling behaviour, vitamin E loading efficiency, release, and deposition on the rabbit skin. Additionally, vitamin E deposition was compared through hydrogels, respectively, containing and not containing trans-ferulic acid. The results showed that ferulate hydrogel was a more effective carrier in protecting vitamin E from photodegradation than hydrogel without antioxidant moieties. Then antioxidant hydrogel could be of potential use for cosmetic and pharmaceutical purposes as carrier of vitamin E that is an antioxidant that reduces erythema, photoaging, photocarcinogenesis, edema, and skin hypersensitivity associated with exposure to ultraviolet B (UVB) radiation, because of its protective effects.


Journal of Cellular and Molecular Medicine | 2009

Characterization of the S-denitrosylating activity of bilirubin.

Eugenio Barone; Sonia Trombino; Roberta Cassano; Alessandro Sgambato; Barbara De Paola; Enrico Di Stasio; Nevio Picci; Paolo Preziosi; Cesare Mancuso

Bilirubin‐IX‐α (BR) is an endogenous molecule with a strong antioxidant feature due to its ability to scavenge free radicals. In this paper, we demonstrated that BR, at concentrations close to those found within the cell (0.1–2.5 μM), acted as a denitrosylating agent and increased the release of nitric oxide from S‐nitrosoglutathione (GSNO) and S‐nitrosocysteine (SNOC) (2.5 μM). The complexation of BR with saturating concentrations of human serum albumin (HSA, 2.5 μM) did not further increase nitric oxide release from GSNO and SNOC. At concentrations similar to those reached in plasma (5–20 μM), BR denitrosylated S‐nitroso‐HSA (2.5 μM), the main circulating S‐nitrosothiol, and this effect was potentiated by the complexation of BR with saturating HSA (20 μM). Furthermore, the product(s) of the reaction between nitric oxide and BR were identified. Ultraviolet and mass spectrometry analysis revealed that nitric oxide binds to BR forming a N‐nitroso derivative (BR–nitric oxide) with extinction coefficients of 1.393 mM−1cm−1 and 2.254 mM−1cm−1 in methanol and NaOH, respectively. The formation of BR–nitric oxide did not occur only in a reconstituted system, but was confirmed in rat fibroblasts exposed to pro‐oxidant stimuli. These results provided novel insights on the antioxidant characteristic of BR through its interaction with nitric oxide, a gaseous neurotransmitter with a well‐known dual effect, namely neuroprotective under physiological conditions or neurotoxic if produced in excess, and proposed BR–nitric oxide as a new biomarker of oxidative/nitrosative stress.


Colloids and Surfaces B: Biointerfaces | 2013

Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes

Sonia Trombino; Roberta Cassano; Teresa Ferrarelli; Eugenio Barone; Nevio Picci; Cesare Mancuso

In this study, stearic acid- and stearyl ferulate-based solid lipid nanoparticles containing trans-ferulic acid (SLN-FA and SLN-SF-FA, respectively), were prepared and characterized for loading efficiency, size and shape. In addition, by using rat brain microsomes, we evaluated in vitro the antioxidant activity of these formulations against three well known initiators of lipid peroxidation, such as AAPH, NADPH/ADP-Fe(3+) and SIN-1 which in turn generate the peroxyl and perferryl radicals as well as peroxynitrite, respectively. Commercially available FA and its ethyl ester (FAEE) were used as comparators. Both SLN-FA and SLN-SF-FA dose-dependently reduced lipid peroxidation induced by the three oxidants. Interestingly, SLN-SF-FA displayed greater efficacy (EC50) and potency (maximal activity) against AAPH- and NADPH/ADP-Fe(3+)-induced lipid peroxidation. Our results support the idea that this new formulations could facilitate the uptake of FA by the cells because of their lipophilic structure, thus increasing FA bioavailability. Furthermore, stearyl ferulate-based nanoparticles could prevent the degradation of FA entrapped on their structure, making FA almost entirely available to explicate its antioxidant power once released.


Colloids and Surfaces B: Biointerfaces | 2010

Effect of formulations variables on the in vitro percutaneous permeation of Sodium Diclofenac from new vesicular systems obtained from Pluronic triblock copolymers

Lorena Tavano; Rita Muzzalupo; Sonia Trombino; Roberta Cassano; Attilio Pingitore; Nevio Picci

The objectives of our study were to evaluate the ability of Pluronic L64 surfactant to give niosomal systems alone or after its functionalization with acrylic groups. The achieved formulations were tested for the percutaneous permeation of Sodium Diclofenac as model drug. In vitro experiments were conducted by Franz diffusion cells, using rabbit ear skin. Data recorded over 24h were compared with those obtained from the drug solution, as control. In addition, the stability of niosomes was improved polymerizing the acryloyl groups of the monomers, because, as reported in the literature, polymerized vesicles maintain their shape for long periods of time, and show remarkable increase in drug encapsulation efficiency. Mean vesicles diameter, drug entrapment efficiency, percutaneous permeation and release profiles were investigated for all vesicles with different composition. The results indicated an increase in mean vesicles diameter and entrapment efficiency with the increase of polymerizable moieties amount. These properties were found to be more evident when the vesicles were polymerized. In addition cytotoxic effects were estimated. The results of this study showed that niosomes based on commercial, functionalized or a mixture of both Pluronic L64 surfactants can be used to achieve retarded release and to enhance the permeation of Sodium Diclofenac, without incurring unacceptable toxicity.


Colloids and Surfaces B: Biointerfaces | 2008

Niosomes from α,ω-trioxyethylene-bis(sodium 2-dodecyloxy-propylenesulfonate): Preparation and characterization

Rita Muzzalupo; Lorena Tavano; Sonia Trombino; Roberta Cassano; Nevio Picci; Camillo La Mesa

The synthesis and characterisation of new surfactants with peculiar physical-chemical properties are amongst the most promising and expanding issues in pharmacological colloid science. The most used vesicular carriers are liposomes prepared from a wide variety of natural and synthetic phospholipids, but several ionic and non-ionic amphiphiles have been used to form multilamellar and/or unilamellar vesicles. In the present study the synthesis of alpha,omega-trioxyethylene-bis(sodium 2-dodecyloxy-propylenesulfonate), an anionic Gemini surfactant, and its ability to form niosomes are elucidated. The compound forms vesicles with and without added cholesterol. The vesicular systems were characterized by size, shape and drug entrapment efficiency. The compounds to be incorporated are beta-carotene and ferulic acid, as antioxidants, acetyl salicylic acid, as FANS, and the antineoplastic 5-flurouracil, widely used in dermatological disorders. The results of this study show that alpha,omega-trioxyethylene-bis(sodium 2-dodecyloxy-propylenesulfonate) can be used for the preparation of niosomes entrapping lypophilic, amphiphilic or hydrophilic substances. These niosomes may be promising candidates as percutaneous carriers for the aforementioned drugs.


Journal of Nutritional Biochemistry | 2011

Docosahexaenoic acid reverts resistance to UV-induced apoptosis in human keratinocytes: involvement of COX-2 and HuR

Simona Serini; Valentina Donato; Elisabetta Piccioni; Sonia Trombino; Giovanni Monego; Amelia Toesca; Idanna Innocenti; Mauro Missori; Marco De Spirito; Leonardo Celleno; Elena Fasano; Franco O. Ranelletti; Gabriella Calviello

The dramatic increase in the incidence of nonmelanoma skin cancer over the last decades has been related to the augmented exposure to ultraviolet (UV) radiation (UVR). It is known that apoptosis is induced as a protective mechanism after the acute irradiation of keratinocytes, whereas apoptotic resistance and carcinogenesis may follow the chronic exposure to UVR. We found that not all the human keratinocytes lines studied underwent apoptosis following acute exposure to UVR (10-60 mJ/cm(2)). Whereas UVR induced apoptosis in the HaCaT cells, NCTC 2544 and nr-HaCaT cells showed apoptosis resistance. The cytokeratin pattern of the apoptosis-resistant cells indicated that they possessed a degree of differentiation lower than that of HaCaT cells. They also showed an enhanced expression of cyclooxygenase-2 (COX-2), an early marker of carcinogenesis in various tissues, including skin. n-3 polyunsaturated fatty acids have drawn increasing interest as nutritional factors with the potential to reduce UVR carcinogenesis, and since they are apoptosis inducers and COX-2 inhibitors in cancer cells, we investigated the ability of n-3 polyunsaturated fatty acids to influence the resistance to UVR-induced apoptosis in keratinocytes. We observed that docosahexaenoic acid (DHA) reverted the resistance of nr-HaCaT cells to UVR-induced apoptosis, increasing the Bax/Bcl-2 ratio and caspase-3 activity, and reduced COX-2 levels by inhibiting the expression of the human antigen R (HuR), a known COX-2 mRNA stabilizer in keratinocytes. The transfection of nr-HaCaT cells with HuR siRNA mimicked the proapoptotic effect of DHA. Overall, our findings further support the role of DHA as a suitable anticarcinogenic factor against nonmelanoma skin cancers.

Collaboration


Dive into the Sonia Trombino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nevio Picci

University of Calabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simona Serini

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriella Calviello

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Franco O. Ranelletti

The Catholic University of America

View shared research outputs
Researchain Logo
Decentralizing Knowledge