Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia V. del Rincon is active.

Publication


Featured researches published by Sonia V. del Rincon.


Oncogene | 2004

Nuclear insulin receptor substrate 1 interacts with estrogen receptor α at ERE promoters

Catia Morelli; Cecilia Garofalo; Diego Sisci; Sonia V. del Rincon; Sandra Cascio; Xiao Tu; Andrea Vecchione; Edward R. Sauter; Wilson H. Miller; Eva Surmacz

Insulin receptor substrate 1 (IRS-1) is a major signaling molecule activated by the insulin and insulin-like growth factor I receptors. Recent data obtained in different cell models suggested that in addition to its conventional role as a cytoplasmic signal transducer, IRS-1 has a function in the nuclear compartment. However, the role of nuclear IRS-1 in breast cancer has never been addressed. Here we report that in estrogen receptor α (ERα)-positive MCF-7 cells, (1) a fraction of IRS-1 was translocated to the nucleus upon 17-β-estradiol (E2) treatment; (2) E2-dependent nuclear translocation of IRS-1 was blocked with the antiestrogen ICI 182,780; (3) nuclear IRS-1 colocalized and co-precipitated with ERα; (4) the IRS-1:ERα complex was recruited to the E2-sensitive pS2 gene promoter. Notably, IRS-1 interaction with the pS2 promoter did not occur in ERα-negative MDA-MB-231 cells, but was observed in MDA-MB-231 cells retransfected with ERα. Transcription reporter assays with E2-sensitive promoters suggested that the presence of IRS-1 inhibits ERα activity at estrogen-responsive element-containing DNA. In summary, our data suggested that nuclear IRS-1 interacts with ERα and that this interaction might influence ERα transcriptional activity.


Oncogene | 2004

Retinoic acid mediates degradation of IRS-1 by the ubiquitin–proteasome pathway, via a PKC-dependant mechanism

Sonia V. del Rincon; Qi Guo; Catia Morelli; Hoi-Ying Shiu; Eva Surmacz; Wilson H. Miller

Insulin receptor substrate-1 (IRS-1) mediates signaling from the insulin-like growth factor type-I receptor. We found that all-trans retinoic acid (RA) decreases IRS-1 protein levels in MCF-7, T47-D, and ZR75.1 breast cancer cells, which are growth arrested by RA, but not in the RA-resistant MDA-MB-231 and MDA-MB-468 cells. Based on prior reports of ubiquitin-mediated degradation of IRS-1, we investigated the ubiquitination of IRS-1 in RA-treated breast cancer cells. Two proteasome inhibitors, MG-132 and lactacystin, blocked the RA-mediated degradation of IRS-1, and RA increased ubiquitination of IRS-1 in the RA-sensitive breast cancer cells. In addition, we found that RA increases serine phosphorylation of IRS-1. To elucidate the signaling pathway responsible for this phosphorylation event, pharmacologic inhibitors were used. Two PKC inhibitors, but not a MAPK inhibitor, blocked the RA-induced degradation and serine phosphorylation of IRS-1. We demonstrate that RA activates PKC-δ in the sensitive, but not in the resistant cells, with a time course that is consistent with the RA-induced decrease of IRS-1. We also show that: (1) RA-activated PKC-δ phosphorylates IRS-1 in vitro, (2) PKC-δ and IRS-1 interact in RA-treated cells, and (3) mutation of three PKC-δ serine sites in IRS-1 to alanines results in no RA-induced in vitro phosphorylation of IRS-1. Together, these results indicate that RA regulates IRS-1 levels by the ubiquitin–proteasome pathway, involving a PKC-sensitive mechanism.


Oncogene | 2003

Retinoic acid-induced growth arrest of MCF-7 cells involves the selective regulation of the IRS-1/PI 3-kinase/AKT pathway

Sonia V. del Rincon; Caroline Rousseau; Ratna Samanta; Wilson H. Miller

In the MCF-7 breast cancer cell line, insulin-like growth factors (IGFs) are known to elicit antiproliferative actions via the insulin receptor substrate-1 (IRS-1)/PI 3-kinase/AKT pathway. All-trans retinoic acid (RA) is a potent inhibitor of MCF-7 cell proliferation, but the mechanism by which growth regulation is achieved remains unclear. We investigated the effects of RA on the regulation of the IGF-IR and its key signaling elements: IRS-1, IRS-2, and SHC. Treatment of MCF-7 cells with RA caused a significant reduction in IRS-1 protein and tyrosine phosphorylation levels at a concentration and time consistent with RA-mediated growth inhibition. IRS-1 regulation is selective, as RA did not influence IRS-2 or SHC levels. Downstream signaling events were also selectively reduced, as RA abrogated IGF-I-stimulated AKT activation but did not alter erk1/2 activation. To confirm the importance of IRS-1 regulation by RA, we examined the response to RA in MCF-7 cells overexpressing IGF-IR and IRS-1. RA resistance was observed in MCF-7 cells overexpressing IRS-1 but not IGF-IR. This suggests that RA-mediated growth inhibition requires the selective downregulation of IRS-1 and AKT. Therapeutic agents targeting the IRS-1/PI 3-kinase/AKT pathway may enhance the cytostatic effects of RA in breast cancer, since overexpression of IRS-1 and AKT have been reported in primary breast tumors.


Cancer Research | 2015

Genetic and Pharmacologic Inhibition of eIF4E Reduces Breast Cancer Cell Migration, Invasion, and Metastasis

Filippa Pettersson; Sonia V. del Rincon; Audrey Emond; Bonnie Huor; Elaine Ngan; Jonathan Ng; Monica C. Dobocan; Peter M. Siegel; Wilson H. Miller

The translation initiation factor eIF4E is an oncogene that is commonly overexpressed in primary breast cancers and metastases. In this article, we report that a pharmacologic inhibitor of eIF4E function, ribavirin, safely and potently suppresses breast tumor formation. Ribavirin administration blocked the growth of primary breast tumors in several murine models and reduced the development of lung metastases in an invasive model. Mechanistically, eIF4E silencing or blockade reduced the invasiveness and metastatic capability of breast cancer cells in a manner associated with decreased activity of matrix metalloproteinase (MMP)-3 and MMP-9. Furthermore, eIF4E silencing or ribavirin treatment suppressed features of epithelial-to-mesenchymal transition, a process crucial for metastasis. Our findings offer a preclinical rationale to explore broadening the clinical evaluation of ribavirin, currently being tested in patients with eIF4E-overexpressing leukemia, as a strategy to treat solid tumors such as metastatic breast cancer.


Molecular Cell | 2013

Coordinate Transcriptional and Translational Repression of p53 by TGF-β1 Impairs the Stress Response

Fernando J. Lopez-Diaz; Philippe Gascard; Sri Kripa Balakrishnan; Jianxin Zhao; Sonia V. del Rincon; Charles H. Spruck; Thea D. Tlsty; Beverly M. Emerson

Cellular stress results in profound changes in RNA and protein synthesis. How cells integrate this intrinsic, p53-centered program with extracellular signals is largely unknown. We demonstrate that TGF-β1 signaling interferes with the stress response through coordinate transcriptional and translational repression of p53 levels, which reduces p53-activated transcription, and apoptosis in precancerous cells. Mechanistically, E2F-4 binds constitutively to the TP53 gene and induces transcription. TGF-β1-activated Smads are recruited to a composite Smad/E2F-4 element by an E2F-4/p107 complex that switches to a Smad corepressor, which represses TP53 transcription. TGF-β1 also causes dissociation of ribosomal protein RPL26 and elongation factor eEF1A from p53 mRNA, thereby reducing p53 mRNA association with polyribosomes and p53 translation. TGF-β1 signaling is dominant over stress-induced transcription and translation of p53 and prevents stress-imposed downregulation of Smad proteins. Thus, crosstalk between the TGF-β and p53 pathways defines a major node of regulation in the cellular stress response, enhancing drug resistance.


Molecular Cancer Therapeutics | 2013

Expression of Leukemia-Associated Fusion Proteins Increases Sensitivity to Histone Deacetylase Inhibitor–Induced DNA Damage and Apoptosis

Luca A. Petruccelli; Filippa Pettersson; Sonia V. del Rincon; Cynthia Guilbert; Jonathan D. Licht; Wilson H. Miller

Histone deacetylase inhibitors (HDI) show activity in a broad range of hematologic and solid malignancies, yet the percentage of patients in any given malignancy who experience a meaningful clinical response remains small. In this study, we sought to investigate HDI efficacy in acute myeloid leukemia (AML) cells expressing leukemia-associated fusion proteins (LAFP). HDIs have been shown to induce apoptosis, in part, through accumulation of DNA damage and inhibition of DNA repair. LAFPs have been correlated with a DNA repair–deficient phenotype, which may make them more sensitive to HDI-induced DNA damage. We found that expression of the LAFPs PLZF-RARα, PML-RARα, and RUNX1-ETO (AML1-ETO) increased sensitivity to DNA damage and apoptosis induced by the HDI vorinostat. The increase in apoptosis correlated with an enhanced downregulation of the prosurvival protein BCL2. Vorinostat also induced expression of the cell-cycle regulators p19INK4D and p21WAF1 and triggered a G2–M cell cycle arrest to a greater extent in LAFP-expressing cells. The combination of LAFP and vorinostat further led to a greater downregulation of several base excision repair (BER) enzymes. These BER genes represent biomarker candidates for response to HDI-induced DNA damage. Notably, repair of vorinostat-induced DNA double-strand breaks was found to be impaired in PLZF-RARα–expressing cells, suggesting a mechanism by which LAFP expression and HDI treatment cooperate to cause an accumulation of damaged DNA. These data support the continued study of HDI-based treatment regimens in LAFP-positive AMLs. Mol Cancer Ther; 12(8); 1591–604. ©2013 AACR.


PLOS ONE | 2010

Development and Validation of a Method for Profiling Post-Translational Modification Activities Using Protein Microarrays

Sonia V. del Rincon; Jeffrey Rogers; Martin Widschwendter; Dahui Sun; Hans B. Sieburg; Charles H. Spruck

Background Post-translational modifications (PTMs) impact on the stability, cellular location, and function of a protein thereby achieving a greater functional diversity of the proteome. To fully appreciate how PTMs modulate signaling networks, proteome-wide studies are necessary. However, the evaluation of PTMs on a proteome-wide scale has proven to be technically difficult. To facilitate these analyses we have developed a protein microarray-based assay that is capable of profiling PTM activities in complex biological mixtures such as whole-cell extracts and pathological specimens. Methodology/Principal Findings In our assay, protein microarrays serve as a substrate platform for in vitro enzymatic reactions in which a recombinant ligase, or extracts prepared from whole cells or a pathological specimen is overlaid. The reactions include labeled modifiers (e.g., ubiquitin, SUMO1, or NEDD8), ATP regenerating system, and other required components (depending on the assay) that support the conjugation of the modifier. In this report, we apply this methodology to profile three molecularly complex PTMs (ubiquitylation, SUMOylation, and NEDDylation) using purified ligase enzymes and extracts prepared from cultured cell lines and pathological specimens. We further validate this approach by confirming the in vivo modification of several novel PTM substrates identified by our assay. Conclusions/Significance This methodology offers several advantages over currently used PTM detection methods including ease of use, rapidity, scale, and sample source diversity. Furthermore, by allowing for the intrinsic enzymatic activities of cell populations or pathological states to be directly compared, this methodology could have widespread applications for the study of PTMs in human diseases and has the potential to be directly applied to most, if not all, basic PTM research.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I

Rodrigo Peña-Hernández; Maud Marques; Khalid Hilmi; Teijun Zhao; Amine Saad; Moulay A. Alaoui-Jamali; Sonia V. del Rincon; Todd Ashworth; Ananda L. Roy; Beverly M. Emerson; Michael Witcher

Significance CCCTC-binding factor (CTCF) is an epigenetic regulatory protein that is not only functionally diverse, but is also targeted to highly diverse DNA binding sites. CTCF cooperates with accessory proteins to achieve various functional outputs. Further evidence in Drosophila shows that CTCF may also be targeted to chromatin via accessory proteins. The identity of such mammalian proteins remains elusive. Herein, we describe evidence that the transcription factor general transcription factor II-I (TFII-I) targets CTCF binding to metabolism-related genes across the genome. We find that TFII-I regulates the transcription of genes within this network on the level of initiation via RNA polymerase II phosphorylation. These results provide a starting point for understanding a biological network communicating information between chromatin architecture, transcription, and metabolism. CCCTC-binding factor (CTCF) is a key regulator of nuclear chromatin structure and gene regulation. The impact of CTCF on transcriptional output is highly varied, ranging from repression to transcriptional pausing and transactivation. The multifunctional nature of CTCF may be directed solely through remodeling chromatin architecture. However, another hypothesis is that the multifunctional nature of CTCF is mediated, in part, through differential association with protein partners having unique functions. Consistent with this hypothesis, our mass spectrometry analyses of CTCF interacting partners reveal a previously undefined association with the transcription factor general transcription factor II-I (TFII-I). Biochemical fractionation of CTCF indicates that a distinct CTCF complex incorporating TFII-I is assembled on DNA. Unexpectedly, we found that the interaction between CTCF and TFII-I is essential for directing CTCF to the promoter proximal regulatory regions of target genes across the genome, particularly at genes involved in metabolism. At genes coregulated by CTCF and TFII-I, we find knockdown of TFII-I results in diminished CTCF binding, lack of cyclin-dependent kinase 8 (CDK8) recruitment, and an attenuation of RNA polymerase II phosphorylation at serine 5. Phenotypically, knockdown of TFII-I alters the cellular response to metabolic stress. Our data indicate that TFII-I directs CTCF binding to target genes, and in turn the two proteins cooperate to recruit CDK8 and enhance transcription initiation.


Molecular Pharmacology | 2014

The novel arsenical darinaparsin is transported by cystine importing systems.

Nicolas Garnier; Geneviève G. J. Redstone; Michael S. Dahabieh; Jessica N. Nichol; Sonia V. del Rincon; Yuxuan Gu; D. Scott Bohle; Yan Sun; Douglas S. Conklin; Koren K. Mann; Wilson H. Miller

Darinaparsin (Dar; ZIO-101; S-dimethylarsino-glutathione) is a promising novel organic arsenical currently undergoing clinical studies in various malignancies. Dar consists of dimethylarsenic conjugated to glutathione (GSH). Dar induces more intracellular arsenic accumulation and more cell death than the FDA-approved arsenic trioxide (ATO) in vitro, but exhibits less systemic toxicity. Here, we propose a mechanism for Dar import that might explain these characteristics. Structural analysis of Dar suggests a putative breakdown product: dimethylarsino-cysteine (DMAC). We show that DMAC is very similar to Dar in terms of intracellular accumulation of arsenic, cell cycle arrest, and cell death. We found that inhibition of γ-glutamyl-transpeptidase (γ-GT) protects human acute promyelocytic leukemia cells (NB4) from Dar, but not from DMAC, suggesting a role for γ-GT in the processing of Dar. Overall, our data support a model where Dar, a GSH S-conjugate, is processed at the cell surface by γ-GT, leading to formation of DMAC, which is imported via xCT, xAG, or potentially other cystine/cysteine importing systems. Further, we propose that Dar induces its own import via increased xCT expression. These mechanisms may explain the enhanced toxicity of Dar toward cancer cells compared with ATO.


PLOS ONE | 2014

Gallotannin Imposes S Phase Arrest in Breast Cancer Cells and Suppresses the Growth of Triple-Negative Tumors In Vivo

Tiejun Zhao; Qiang Sun; Sonia V. del Rincon; Amanda Lovato; Maud Marques; Michael Witcher

Triple-negative breast cancers are associated with poor clinical outcomes and new therapeutic strategies are clearly needed. Gallotannin (Gltn) has been previously demonstrated to have potent anti-tumor properties against cholangiocarcinoma in mice, but little is known regarding its capacity to suppress tumor outgrowth in breast cancer models. We tested Gltn for potential growth inhibitory properties against a variety of breast cancer cell lines in vitro. In particular, triple-negative breast cancer cells display higher levels of sensitivity to Gltn. The loss of proliferative capacity in Gltn exposed cells is associated with slowed cell cycle progression and S phase arrest, dependent on Chk2 phosphorylation and further characterized by changes to proliferation related genes, such as cyclin D1 (CcnD1) as determined by Nanostring technology. Importantly, Gltn administered orally or via intraperitoneal (IP) injections greatly reduced tumor outgrowth of triple-negative breast cells from mammary fat pads without signs of toxicity. In conclusion, these data strongly suggest that Gltn represents a novel approach to treat triple-negative breast carcinomas.

Collaboration


Dive into the Sonia V. del Rincon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge