Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonja Binder is active.

Publication


Featured researches published by Sonja Binder.


Neurobiology of Learning and Memory | 2012

Sleep enhances memory consolidation in the hippocampus-dependent object-place recognition task in rats

Sonja Binder; Paul Christian Baier; Matthias Mölle; Marion Inostroza; Jan Born; Lisa Marshall

The positive impact of sleep on memory consolidation has been shown for human subjects in numerous studies, but there is still sparse knowledge on this topic in rats, one of the most prominent model species in neuroscience research. Here, we examined the role of sleep in the object-place recognition task, a task closely comparable to tasks typically applied for testing human declarative memory: It is a one-trial task, hippocampus-dependent, not stressful and can be repeated within the same animal. A test session consisted of the Sample trial, followed by a 2-h retention interval and a Test trial, the latter examining the memory the rat had for the places of two objects presented at the Sample trial. In Experiment 1, each rat was tested twice, with the retention interval taking place either in the morning or evening, i.e., in the inactive or active phase, respectively. Rats showed significantly (p<0.01) better memory for object place after the Morning session. To control for confounding circadian factors, in Experiment 2 rats were tested four times, i.e., in the morning or in the evening while sleep was or was not deprived. Sleep during the retention interval was recorded polysomnographically. Rats only showed significant memory for the target object place in the Test trial after the Morning retention interval in the absence of sleep deprivation, and recognition performance in this condition was significantly superior to that in the three other conditions (p<0.05). EEG recordings during spontaneous morning sleep revealed increased slow oscillation (0.85-2.0 Hz) and upper delta (2.0-4.0 Hz), but reduced spindle band (10.5-13.5 Hz) activity, as compared to evening sleep. However, spindle band power was increased in the Morning retention interval in comparison to a Morning Baseline period (p<0.05). We conclude that consolidation of object-place memory depends on sleep, and presumably requires NonREM sleep rich in both slow wave and spindle activity.


Frontiers in Human Neuroscience | 2013

Contribution of transcranial oscillatory stimulation to research on neural networks: an emphasis on hippocampo-neocortical rhythms

Lisa Marshall; Sonja Binder

EEG rhythms reflect the synchronized activity of underlying biological neuronal network oscillations, and certain predominant frequencies are typically linked to certain behavioral states. For instance, slow wave activity characterized by sleep slow oscillation (SO) emerges normally during slow-wave sleep (SWS). In this mini-review we will first give a background leading up to the present day association between specific oscillations and their functional relevance for learning and memory consolidation. Following, some principles on oscillatory activity are summarized and finally results of studies employing slowly oscillating transcranial electric stimulation are given. We underscore that oscillatory transcranial electric stimulation presents a tool to study principles of cortical network function.


Frontiers in Behavioral Neuroscience | 2014

Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats

Sonja Binder; Julia Rawohl; Jan Born; Lisa Marshall

Slow wave sleep, hallmarked by the occurrence of slow oscillations (SO), plays an important role for the consolidation of hippocampus-dependent memories. Transcranial stimulation by weak electric currents oscillating at the endogenous SO frequency (SO-tDCS) during post-learning sleep was previously shown by us to boost SO activity and improve the consolidation of hippocampus-dependent memory in human subjects. Here, we aimed at replicating and extending these results to a rodent model. Rats were trained for 12 days at the beginning of their inactive phase in the reference memory version of the radial arm maze. In a between subjects design, animals received SO-tDCS over prefrontal cortex (PFC) or sham stimulation within a time frame of 1 h during subsequent non-rapid eye movement (NREM) sleep. Applied over multiple daily sessions SO-tDCS impacted cortical network activity as measured by EEG and behavior: at the EEG level, SO-tDCS enhanced post-stimulation upper delta (2–4 Hz) activity whereby the first stimulations of each day were preferentially affected. Furthermore, commencing on day 8, SO-tDCS acutely decreased theta activity indicating long-term effects on cortical networks. Behaviorally, working memory for baited maze arms was enhanced up to day 4, indicating enhanced consolidation of task-inherent rules, while reference memory errors did not differ between groups. Taken together, we could show here for the first time an effect of SO-tDCS during NREM sleep on cognitive functions and on cortical activity in a rodent model.


Progress in Neurobiology | 2015

A critical appraisal of the what-where-when episodic-like memory test in rodents: Achievements, caveats and future directions.

Sonja Binder; Ekrem Dere; Armin Zlomuzica

During the last decade the what, where and when (WWWhen) episodic-like memory (ELM) task, which is based on the object recognition paradigm, has been utilized for the cognitive phenotyping of mouse mutants and transgenic mouse models of neuropsychiatric diseases. It was also widely used to identify the neuroanatomical, electrophysiological and pharmacological foundations of ELM formation, retention and retrieval. Findings from these studies have helped to increase our understanding of the neurobiology and neuropathology of episodic memory in the context of neurodegenerative and neuropsychiatric diseases. Pharmacological studies identified novel targets that might facilitate episodic memory formation in patients with memory problems. In this review, we attempt to delineate the cognitive operations and processes that might underlie rodent performance in the WWWhen/ELM task. We discuss major issues of the object recognition paradigm, including the problem of familiarity vs. recollection-based object recognition, the problem of novel object-induced neophobia, and propose novel methodological solutions to these issues. In conclusion, the WWWhen/ELM task has proven to be a useful tool in the fields of behavioral and translational clinical neuroscience and has the potential to be further refined to address major problems in animal memory research.


Behavioural Brain Research | 2014

Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats

Carlos N. Oyanedel; Sonja Binder; Eduard Kelemen; Kimberley Petersen; Jan Born; Marion Inostroza

Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined.


Gap Junctions in the Brain | 2013

Gap Junctions in the Brain

Armin Zlomuzica; Sonja Binder; Ekrem Dere

Gap junctions provide a reciprocal direct cytoplasmic linkage between adjacent cells for electrotonic and metabolic cell-to-cell communication. Gap junctions between glial cells or neurons are ubiquitously expressed in the brain and have been implicated in brain morphogenesis including cell differentiation, cell migration and survival, tissue homeostasis, neurogenesis and left–right asymmetry. Genome and mutation analysis as well as gene-targeting technologies have implicated gap junction genes in a variety of human diseases including deafness, skin disease, peripheral and central neuropathies, epilepsy, brain trauma and cardiovascular disease. Gap junctions are also involved in the synchronization and rhythmic oscillation of hippocampal and neocortical neuronal ensembles, which may be important for basic and higher cognitive processes. This chapter summarizes the structure, biophysiological characteristics, and possible physiological and pathological functions of gap junctions in the brain.


international ieee/embs conference on neural engineering | 2011

Finite element simulation of transcranial current stimulation in realistic rat head model

Fernando Gasca; Lisa Marshall; Sonja Binder; Alexander Schlaefer; Ulrich G. Hofmann; Achim Schweikard

Transcranial current stimulation (tCS) is a method for modulating neural excitability and is used widely for studying brain function. Although tCS has been used on the rat, there is limited knowledge on the induced electric field distribution during stimulation. This work presents the finite element (FE) simulations of tCS in a realistic rat head model derived from MRI data. We simulated two electrode configurations and analyzed the spatial focality of the induced electric field for three implantation depth scenarios : (1) electrode implanted at the surface of the skull, (2) halfway through the skull and (3) in contact with cerebrospinal fluid. We quantitatively show the change in focality of stimulation with depth. This work emphasizes the importance of performing FE analysis in realistic models as a vital step in the design of tCS rat experiments. This can yield a better understanding of the location and intensity of stimulation, and its correlation to brain function.


Developmental Neuroscience | 2012

Changes in object recognition and anxiety-like behaviour in mice expressing a Cx47 mutation that causes Pelizaeus-Merzbacher-like disease.

Armin Zlomuzica; Oliver Tress; Sonja Binder; Catherine Rovira; Klaus Willecke; Ekrem Dere

Pelizaeus-Merzbacher-like disease is characterized by impaired psychomotor development, ataxia, progressive spasticity and mental retardation. It is induced by mutations in the gap junction gene GJC2 that encodes for the gap junction protein connexin 47. Mice bearing a human Cx47M283T missense mutation have been generated as a transgenic mouse model of Pelizaeus-Merzbacher-like disease. Homozygous expression of the mutant connexin 47 gene in oligodendrocytes resulted in a complex and variable neuropathologic phenotype, which was associated with impairments in motor coordination in juvenile, but not adult mice. In the present study, we have investigated anxiety-like behaviour and spatial working memory in juvenile (P23) and adult (3-month-old) Cx47M282T mutant mice. Adult Cx47M282T mice were also evaluated in terms of neuromotor functions and in the novel object recognition test. Juvenile Cx47M282T mutant mice exhibited an increase in anxiety-like behaviour in the open field test, but no changes in spatial working memory performance. No significant changes in anxiety-like behaviour, spatial working memory or neuromotor functions were observed in the adult Cx47M282T mutant mice. However, novel object recognition was significantly impaired in adult Cx47M282T mice. Our results suggest that the expression of the human Cx47M282T mutation in the mouse causes changes in anxiety-like behaviour in juvenile and novel object recognition impairments in adult mice. It appears that the distortion of panglial gap junction coupling in white and grey matter tissue in the Cx47M282T mice is associated with a complex age-dependent behavioural phenotype including changes in psychomotor, emotional and memory functions.


Current Directions in Biomedical Engineering | 2015

Closed-loop transcranial alternating current stimulation of slow oscillations

Christian Wilde; Ralf Bruder; Sonja Binder; Lisa Marshall; Achim Schweikard

Abstract Transcranial alternating current stimulation (tACS) is an emerging non-invasive tool for modulating brain oscillations. There is evidence that weak oscillatory electrical stimulation during sleep can entrain cortical slow oscillations to improve the memory consolidation in rodents and humans. Using a novel method and a custom built stimulation device, automatic stimulation of slow oscillations in-phase with the endogenous activity in a real-time closed-loop setup is possible. Preliminary data from neuroplasticity experiments show a high detection performance of the proposed method, electrical measurements demonstrate the outstanding quality of the presented stimulation device.


Behavioural Brain Research | 2013

Sleep-dependency of episodic-like memory consolidation in rats

Marion Inostroza; Sonja Binder; Jan Born

Collaboration


Dive into the Sonja Binder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Born

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Schlaefer

Hamburg University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorothea Dere

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge