Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonja I. Buschow is active.

Publication


Featured researches published by Sonja I. Buschow.


Blood | 2013

Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets

Jurjen Tel; Gerty Schreibelt; Simone P. Sittig; Till S.M. Mathan; Sonja I. Buschow; Luis J. Cruz; A.J.A. Lambeck; Carl G. Figdor; I.J.M. de Vries

In human peripheral blood, 4 populations of dendritic cells (DCs) can be distinguished, plasmacytoid dendritic cells (pDCs) and CD16(+), CD1c(+), and BDCA-3(+) myeloid DCs (mDCs), each with distinct functional characteristics. DCs have the unique capacity to cross-present exogenously encountered antigens (Ags) to CD8(+) T cells. Here we studied the ability of all 4 blood DC subsets to take up, process, and present tumor Ags to T cells. Although pDCs take up less Ags than CD1c(+) and BDCA3(+) mDCs, pDCs induce potent Ag-specific CD4(+) and CD8(+) T-cell responses. We show that pDCs can preserve Ags for prolonged periods of time and on stimulation show strong induction of both MHC class I and II, which explains their efficient activation of both CD4(+) and CD8(+) T cells. Furthermore, pDCs cross-present soluble and cell-associated tumor Ags to cytotoxic T lymphocytes equally well as BDCA3(+) mDCs. These findings, and the fact that pDCs outnumber BDCA3(+) mDCs, both in peripheral blood and lymph nodes, together with their potent IFN-I production, known to activate both components of the innate and adaptive immune system, put human pDCs forward as potent activators of CD8(+) T cells in antitumor responses. Our findings may therefore have important consequences for the development of antitumor immunotherapy.


Molecular Pharmaceutics | 2011

Multimodal imaging of nanovaccine carriers targeted to human dendritic cells

Luis J. Cruz; Paul J. Tacken; Fernando Bonetto; Sonja I. Buschow; Huib J.E. Croes; Mietske Wijers; I. Jolanda M. de Vries; Carl G. Figdor

Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy against cancer and infectious diseases. The targeted delivery of nanovaccine particles (NPs) to DCs in vivo is a promising strategy to enhance immune responses. Here, targeted nanovaccine carriers were generated that allow multimodal imaging of nanocarrier-DC interactions from the subcellular to the organism level. These carriers were made of biodegradable poly(D,L-lactide-co-glycolide) harboring superparamagnetic iron oxide particles (SPIO) and fluorescently labeled antigen in a single particle. Targeted delivery was facilitated by coating the NPs with antibodies recognizing the DC-specific receptor DC-SIGN. The fluorescent label allowed for rapid analysis and quantification of specific versus nonspecific uptake of targeted NPs by DCs compared to other blood cells. In addition, it showed that part of the encapsulated antigen reached the lysosomal compartment of DCs within 24 h. Moreover, the presence of fluorescent label did not prevent the antigen from being presented to antigen-specific T cells. The incorporated SPIO was applied to track the NPs at subcellular cell organel level using transmission electron microscopy (TEM). NPs were found within endolysosomal compartments, where part of the SPIO was already released within 24 h. Furthermore, part of the NPs seemed to localize within the cytoplasm. Ex vivo loading of DCs with NPs resulted in efficient labeling and detection by MRI and did not abolish cell migration within collagen scaffolds. In conclusion, incorporation of two imaging agents within a single carrier allows tracking of targeted nanovaccines on a subcellular, cellular and possibly organism level, thereby facilitating rational design of in vivo targeted vaccination strategies.


Biomaterials | 2012

Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN.

Luis J. Cruz; Paul J. Tacken; Jeanette M. Pots; Ruurd Torensma; Sonja I. Buschow; Carl G. Figdor

Vaccine efficacy is improved upon specific delivery to professional antigen (Ag) presenting cells, such as dendritic cells (DCs). Antigenicity and adjuvanticity of vaccine components can be enhanced by encapsulation within nanoparticle (NP) vaccine carriers that are targeted to the human DC-specific C-type lectin receptor DC-SIGN. Here we used two strategies to target vaccines components to DC-SIGN: 1) carbohydrates as natural receptor ligands and 2) receptor-specific antibodies (Abs). To determine the optimal targeting strategy, we coated NP vaccines harboring MHC class I or II-restricted Ags and the TLR ligands (TLRLs) poly I:C and resiquimod with either the DC-SIGN ligands Lewis-X (Le(x)), mannosylated lipoarabinomannan (ManLAM), glycosylated HIV protein gp120, or three distinct DC-SIGN Abs. Although, because of their lower MW, surface coating of NP vaccines with carbohydrates resulted in a higher number of surface molecules per NP than coating with Abs, NP vaccines carrying Abs were more effectively bound and internalized by human DCs than carriers harboring Le(x), ManLAM or gp120. Furthermore, NP vaccines harboring TLRLs triggered significant induction of DC maturation markers when compared to those without TLRLs, irrespective of the targeting moiety. Ab- and gp120-mediated targeting induced equally high levels of proinflammatory cytokines and increased presentation of the MHC class I-restricted epitope. By contrast, presentation of the MHC class II-restricted epitope was more efficient upon Ab-mediated targeting than when using gp120, Le(x) or ManLAM. From these findings we conclude that receptor-specific Abs are more effective than carbohydrates for DC-targeted vaccination strategies.


Frontiers in Immunology | 2013

Human plasmacytoid dendritic cells: from molecules to intercellular communication network

Till S.M. Mathan; Carl G. Figdor; Sonja I. Buschow

Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells, making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this review we will highlight a selection of cell surface proteins expressed by human pDCs that may facilitate communication with other immune cells, and we will discuss the implications of these molecules for pDC-driven immune responses.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Enhanced receptor–clathrin interactions induced by N-glycan–mediated membrane micropatterning

Juan A. Torreno-Pina; Bruno M. Castro; Carlo Manzo; Sonja I. Buschow; Alessandra Cambi; Maria F. Garcia-Parajo

Significance Glycan-based interactions can organize the plasma membrane into specialized domains that perform unique functions. One of their major roles is to regulate the turnover of receptors on the cell membrane. However, there is no clear picture on how this occurs. In this work we visualize cell membrane micropatterning mediated by glycans using a combination of superresolution imaging techniques and dual-color single-particle tracking. We find that this micropatterning corrals the receptor dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) into clathrin active regions, thereby increasing clathrin–receptor interactions, and potentially influencing clathrin-mediated endocytosis of DC-SIGN-bound ligands. We also establish that clathrin–receptor encounters do not occur in a random fashion and further substantiate the dynamic and transient behavior of clathrin interactions with their cargo before successful internalization. Glycan–protein interactions are emerging as important modulators of membrane protein organization and dynamics, regulating multiple cellular functions. In particular, it has been postulated that glycan-mediated interactions regulate surface residence time of glycoproteins and endocytosis. How this precisely occurs is poorly understood. Here we applied single-molecule-based approaches to directly visualize the impact of glycan-based interactions on the spatiotemporal organization and interaction with clathrin of the glycosylated pathogen recognition receptor dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN). We find that cell surface glycan-mediated interactions do not influence the nanoscale lateral organization of DC-SIGN but restrict the mobility of the receptor to distinct micrometer-size membrane regions. Remarkably, these regions are enriched in clathrin, thereby increasing the probability of DC-SIGN–clathrin interactions beyond random encountering. N-glycan removal or neutralization leads to larger membrane exploration and reduced interaction with clathrin, compromising clathrin-dependent internalization of virus-like particles by DC-SIGN. Therefore, our data reveal that cell surface glycan-mediated interactions add another organization layer to the cell membrane at the microscale and establish a novel mechanism of extracellular membrane organization based on the compartments of the membrane that a receptor is able to explore. Our work underscores the important and complex role of surface glycans regulating cell membrane organization and interaction with downstream partners.


Cancer Immunology, Immunotherapy | 2012

The chemotherapeutic drug oxaliplatin differentially affects blood DC function dependent on environmental cues

Jurjen Tel; Stanleyson V. Hato; Ruurd Torensma; Sonja I. Buschow; Carl G. Figdor; W. Joost Lesterhuis; I. Jolanda M. de Vries

It has become evident that the tumor microenvironment plays a pivotal role in the maintenance of cancerous growth. One of the acquired functions of the tumor microenvironment is the suppression of immune responses. Indeed, blocking the inhibitory pathways operational in the microenvironment results in enhanced T-cell-dependent, anti-tumor immunity. Chemotherapeutic drugs not only directly kill tumor cells but also shape the tumor microenvironment and potentiate anti-tumor immunity. Here, we demonstrate that the chemotherapeutic compound oxaliplatin acts as a double-edged sword. Besides killing tumor cells, oxaliplatin bolsters immunosuppressive pathways, resulting in decreased activation of T cells by human plasmacytoid dendritic cells (pDCs). Exposure to oxaliplatin markedly increased expression of the T-cell inhibitory molecule programmed death receptor-ligand 1 (PD-L1) on human pDCs and also TLR9-induced IFNα secretion. Furthermore, oxaliplatin decreased TLR-induced STAT1 and STAT3 expression, and NF-κB-mediated responses. The oxaliplatin induced upregulation of PD-L1 and downregulation of costimulatory molecules CD80 and CD86 resulted in decreased T-cell proliferation. Our results demonstrate that platinum-based anticancer drugs adapt TLR-induced signaling in human pDCs and myeloid DCs (mDCs), thereby downgrading their immunostimulatory potential.


Immunome Research | 2010

DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells

Duccio Cavalieri; Damariz Rivero; Luca Beltrame; Sonja I. Buschow; Enrica Calura; Lisa Rizzetto; Sandra Gessani; Maria Cristina Gauzzi; Walter Reith; Andreas Baur; Roberto Bonaiuti; Marco Brandizi; Carlotta De Filippo; Ugo D'Oro; Sorin Draghici; Isabelle Dunand-Sauthier; Evelina Gatti; Francesca Granucci; Michaela Gündel; Matthijs Kramer; Mirela Kuka; Arpad Lanyi; Cornelis J. M. Melief; Nadine van Montfoort; Renato Ostuni; Philippe Pierre; Razvan R. Popovici; Éva Rajnavölgyi; Stephan Schierer; Gerold Schuler

BackgroundThe advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs).ResultsPathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules.ConclusionsThe initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies.


Cancer Research | 2016

Expansion of a BDCA1+CD14+ Myeloid Cell Population in Melanoma Patients May Attenuate the Efficacy of Dendritic Cell Vaccines.

Ghaith Bakdash; Sonja I. Buschow; M.A.J. Gorris; Altuna Halilovic; Stanleyson V. Hato; Annette E. Sköld; Gerty Schreibelt; Simone P. Sittig; Ruurd Torensma; T. de Boer; C. Schroder; Evelien Smits; Carl G. Figdor; I.J.M. de Vries

The tumor microenvironment is characterized by regulatory T cells, type II macrophages, myeloid-derived suppressor cells, and other immunosuppressive cells that promote malignant progression. Here we report the identification of a novel BDCA1(+)CD14(+) population of immunosuppressive myeloid cells that are expanded in melanoma patients and are present in dendritic cell-based vaccines, where they suppress CD4(+) T cells in an antigen-specific manner. Mechanistic investigations showed that BDCA1(+)CD14(+) cells expressed high levels of the immune checkpoint molecule PD-L1 to hinder T-cell proliferation. While this BDCA1(+)CD14(+) cell population expressed markers of both BDCA1(+) dendritic cells and monocytes, analyses of function, transcriptome, and proteome established their unique nature as exploited by tumors for immune escape. We propose that targeting these cells may improve the efficacy of cancer immunotherapy. Cancer Res; 76(15); 4332-46. ©2016 AACR.


Journal of Proteomics | 2012

Unraveling the human dendritic cell phagosome proteome by organellar enrichment ranking

Sonja I. Buschow; Edwin Lasonder; Radek Szklarczyk; Machteld M. Oud; I. Jolanda M. de Vries; Carl G. Figdor

Dendritic cells (DC) take up pathogens through phagocytosis and process them into protein and lipid fragments for presentation to T cells. So far, the proteome of the human DC phagosome, a detrimental compartment for antigen processing and presentation as well as for DC activation, remains largely uncharacterized. Here we have analyzed the protein composition of phagosomes from human monocyte-derived DC. For LC-MS/MS analysis we purified phagosomes from DC using latex beads targeted to DC-SIGN, and quantified proteins using a label-free method. We used organellar enrichment ranking (OER) to select proteins with a high potential to be relevant for phagosome function. The method compares phagosome protein abundance with protein abundance in whole DC. Phagosome enrichment indicates specific recruitment to the phagosome rather than co-purification or passive incorporation. Using OER we extracted the most enriched proteins that we further complemented with functionally associated proteins to define a set of 90 phagosomal proteins that included many proteins with established relevance on DC phagosomes as well as high potential novel candidates. We already experimentally confirmed phagosomal recruitment of Galectin-9, which has not been previously associated with phagocytosis, to both bead and pathogen containing phagosomes, suggesting a role for Galectin-9 in DC phagocytosis.


OncoImmunology | 2017

PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma

Kostandinos Sideras; Katharina Biermann; Joanne Verheij; Bart Takkenberg; Shanta Mancham; Bettina E. Hansen; Hannah Schutz; Robert A. de Man; Dave Sprengers; Sonja I. Buschow; Maddy C. M. Verseput; Patrick P. C. Boor; Qiuwei Pan; Thomas M. van Gulik; Türkan Terkivatan; Jan N. M. IJzermans; Ulrich Beuers; Stefan Sleijfer; Marco J. Bruno; Jaap Kwekkeboom

ABSTRACT Novel systemic treatments for hepatocellular carcinoma (HCC) are strongly needed. Immunotherapy is a promising strategy that can induce specific antitumor immune responses. Understanding the mechanisms of immune resistance by HCC is crucial for development of suitable immunotherapeutics. We used immunohistochemistry on tissue-microarrays to examine the co-expression of the immune inhibiting molecules PD-L1, Galectin-9, HVEM and IDO, as well as tumor CD8+ lymphocyte infiltration in HCC, in two independent cohorts of patients. We found that at least some expression in tumor cells was seen in 97% of cases for HVEM, 83% for PD-L1, 79% for Gal-9 and 66% for IDO. In the discovery cohort (n = 94), we found that lack of, or low, tumor expression of PD-L1 (p < 0.001), Galectin-9 (p < 0.001) and HVEM (p < 0.001), and low CD8+TIL count (p = 0.016), were associated with poor HCC-specific survival. PD-L1, Galectin-9 and CD8+TIL count were predictive of HCC-specific survival independent of baseline clinicopathologic characteristics and the combination of these markers was a powerful predictor of HCC-specific survival (HR 0.29; p <0.001). These results were confirmed in the validation cohort (n = 60). We show that low expression levels of PD-L1 and Gal-9 in combination with low CD8+TIL count predict extremely poor HCC-specific survival and it requires a change in two of these parameters to significantly improve prognosis. In conclusion, intra-tumoral expression of these immune inhibiting molecules was observed in the majority of HCC patients. Low expression of PD-L1 and Galectin-9 and low CD8+TIL count are associated with poor HCC-specific survival. Combining immune biomarkers leads to superior predictors of HCC mortality.

Collaboration


Dive into the Sonja I. Buschow's collaboration.

Top Co-Authors

Avatar

Carl G. Figdor

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea M. Woltman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis J. Cruz

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stanleyson V. Hato

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Till S.M. Mathan

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Edwin Lasonder

Plymouth State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Beltrame

Mario Negri Institute for Pharmacological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge