Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonja Pavlovic is active.

Publication


Featured researches published by Sonja Pavlovic.


Nature Genetics | 2011

Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach

Belinda Giardine; Joseph A. Borg; Douglas R. Higgs; Kenneth R. Peterson; Sjaak Philipsen; Donna Maglott; Belinda K. Singleton; David J. Anstee; A. Nazli Basak; Barnaby Clark; Flavia C Costa; Paula Faustino; Halyna Fedosyuk; Alex E. Felice; Alain Francina; Renzo Galanello; Monica V E Gallivan; Marianthi Georgitsi; Richard J. Gibbons; P. C. Giordano; Cornelis L. Harteveld; James D. Hoyer; Martin Jarvis; Philippe Joly; Emmanuel Kanavakis; Panagoula Kollia; Stephan Menzel; Webb Miller; Kamran Moradkhani; John Old

We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases.


American Journal of Hematology | 2012

Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies

Ana Puda; Jelena D. Milosevic; Tiina Berg; Thorsten Klampfl; Ashot S. Harutyunyan; Bettina Gisslinger; Elisa Rumi; Daniela Pietra; Luca Malcovati; Chiara Elena; Michael Doubek; Michael Steurer; Natasa Tosic; Sonja Pavlovic; Paola Guglielmelli; Lisa Pieri; Alessandro M. Vannucchi; Heinz Gisslinger; Mario Cazzola; Robert Kralovics

Chronic myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) have an inherent tendency to progress to acute myeloid leukemia (AML). Using high‐resolution SNP microarrays, we studied a total of 517 MPN and MDS patients in different disease stages, including 77 AML cases with previous history of MPN (N = 46) or MDS (N = 31). Frequent chromosomal deletions of variable sizes were detected, allowing the mapping of putative tumor suppressor genes involved in the leukemic transformation process. We detected frequent deletions on the short arm of chromosome 6 (del6p). The common deleted region on 6p mapped to a 1.1‐Mb region and contained only the JARID2 gene—member of the polycomb repressive complex 2 (PRC2). When we compared the frequency of del6p between chronic and leukemic phase, we observed a strong association of del6p with leukemic transformation (P = 0.0033). Subsequently, analysis of deletion profiles of other PRC2 members revealed frequent losses of genes such as EZH2, AEBP2, and SUZ12; however, the deletions targeting these genes were large. We also identified two patients with homozygous losses of JARID2 and AEBP2. We observed frequent codeletion of AEBP2 and ETV6, and similarly, SUZ12 and NF1. Using next generation exome sequencing of 40 patients, we identified only one somatic mutation in the PRC2 complex member SUZ12. As the frequency of point mutations in PRC2 members was found to be low, deletions were the main type of lesions targeting PRC2 complex members. Our study suggests an essential role of the PRC2 complex in the leukemic transformation of chronic myeloid disorders. Am. J. Hematol. 2012.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Maritime route of colonization of Europe

Peristera Paschou; Petros Drineas; Evangelia Yannaki; Anna Razou; Katerina Kanaki; Fotis Tsetsos; Shanmukha Sampath Padmanabhuni; Manolis Michalodimitrakis; Maria C. Renda; Sonja Pavlovic; Achilles Anagnostopoulos; John A. Stamatoyannopoulos; Kenneth K. Kidd; George Stamatoyannopoulos

Significance The question of colonization of Europe by Neolithic people of the Near East and their contribution to the farming economy of Europe has been addressed with extensive archaeological studies and many genetic investigations of extant European and Near Eastern populations. Here, we use DNA polymorphisms of extant populations to investigate the patterns of gene flow from the Near East to Europe. Our data support the hypothesis that Near Eastern migrants reached Europe from Anatolia. A maritime route and island hopping was mainly used by these Near Eastern migrants to reach Southern Europe. The Neolithic populations, which colonized Europe approximately 9,000 y ago, presumably migrated from Near East to Anatolia and from there to Central Europe through Thrace and the Balkans. An alternative route would have been island hopping across the Southern European coast. To test this hypothesis, we analyzed genome-wide DNA polymorphisms on populations bordering the Mediterranean coast and from Anatolia and mainland Europe. We observe a striking structure correlating genes with geography around the Mediterranean Sea with characteristic east to west clines of gene flow. Using population network analysis, we also find that the gene flow from Anatolia to Europe was through Dodecanese, Crete, and the Southern European coast, compatible with the hypothesis that a maritime coastal route was mainly used for the migration of Neolithic farmers to Europe.


Annals of Hematology | 2007

Importance of early detection and follow-up of FLT3 mutations in patients with acute myeloid leukemia

Natasa Colovic; Natasa Tosic; Sanja Aveic; Marija Djuric; Natasa Milic; Vladimir Bumbasirevic; Milica Colovic; Sonja Pavlovic

Mutations in the fms-like tyrosine kinase 3 (FLT3) gene, such as internal tandem duplication (FLT3/ITD) in the juxtamembrane domain and point mutations in the tyrosine kinase domain, are the most common abnormalities in acute myeloid leukemia (AML). FLT3/ITD and FLT3/D835 mutations were analyzed in 113 Serbian adult AML patients using polymerase chain reaction. Twenty patients were found to be FLT3/ITD positive (17.7%). The mutations occurred most frequently in M5 and M0 subtypes of AML. They were mainly associated with the normal karyotype. All patients harboring FLT3/ITD had a higher number of white blood cells than patients without it (p = 0.027). FLT3/ITD mutations were associated with lower complete remission (CR) rate (χ2 = 5.706; p = 0.017) and shorter overall survival (OS; Log rank = 8.76; p = 0.0031). As for disease-free survival, the difference between FLT3/ITD-positive and FLT3/ITD-negative patients was not statistically significant (Log rank = 0.78; p = 0.3764). In multivariate analysis, the presence of FLT3/ITD mutations was the most significant prognostic factor for both OS and CR rate (p = 0.0287; relative risk = 1.73; 95% CI = 1.06–2.82). However, in the group of patients with the intermediate-risk karyotype, the mere presence of FLT3/ITD was not associated with inferior clinical outcome. FLT3/D835 point mutation was found in four patients (3.5%) only. Follow-up of the FLT3/ITD-positive patients revealed stability of this mutation during the course of the disease. However, changes in the pattern of FLT3/D835 mutations in initial and relapsed AML were observed. Our results indicate an association of FLT3/ITD with the adverse outcome in AML patients treated with standard induction chemotherapy. Because FLT3/ITD mutation is a target for specific therapeutic inhibition, its early detection could be helpful in clinical practice.


Therapeutic Drug Monitoring | 2006

Analysis of thiopurine S-methyltransferase polymorphism in the population of Serbia and Montenegro and mercaptopurine therapy tolerance in childhood acute lymphoblastic leukemia

Lidija Dokmanovic; Jelena Urosevic; Dragana Janic; Nada Jovanovic; Branka Petrucev; Natasa Tosic; Sonja Pavlovic

Thiopurine S-methyltransferase (TPMT) is an enzyme that converts thiopurine drugs into inactive metabolites. It is now well established that interindividual variation in sensitivity to thiopurines can be the result of the presence of genetic polymorphisms in the TPMT gene. The aim of this study was to determine the frequency and type of TPMT polymorphisms in the population of Serbia and Montenegro and to assess its relevance in the management of childhood acute lymphoblastic leukemia (ALL). Blood samples from 100 healthy adults and 100 children with ALL were analyzed for common mutations in the TPMT gene using polymerase chain reaction-based assays. The results revealed that allelic frequencies were 0.2% for TPMT*2, 3.2% for TPMT*3A, and 0.5% for TPMT*3B. A rare TPMT*3B allele was detected in 2 families. No TPMT*3C allele was found. The general pattern of TPMT-variant allele distribution as well as their frequencies in the population of Serbia and Montenegro, is similar to those determined for other Slavic and Mediterranean populations. The ability to tolerate 6-mercaptopurine (6-MP) -based maintenance therapy was used as a surrogate marker of hematologic toxicity. In the study of 50 patients with childhood ALL treated according to the BFM-like protocol, it was found that even TPMT-heterozygous patients are at greater risk of thiopurine drug-related leukopenia (mean duration of period when children missed therapy as a result of leukopenia for TPMT-heterozygous patients was 11.3 weeks vs 3.4 weeks for wild-type genotype patients, P < 0.01). In another group of 50 patients, the TPMT genotype was determined prospectively. The therapy protocol was modified considering their TPMT genotype. Administering reduced 6-MP dosages in the initial phase of maintenance allowed TPMT-heterozygous patients to later receive full protocol doses of both 6-MP and nonthiopurine therapy without omitting therapy resulting from myelotoxicity. These results justify performing TPMT genotyping before initiating thiopurine therapy in all children with ALL to minimize consequent toxicity.


Pharmacogenomics | 2010

Functional analysis of the role of the TPMT gene promoter VNTR polymorphism in TPMT gene transcription

Branka Zukic; Milena Radmilovic; Maja Stojiljkovic; Natasa Tosic; Farzin Pourfarzad; Lidija Dokmanovic; Dragana Janic; Natasa Colovic; Sjaak Philipsen; George P. Patrinos; Sonja Pavlovic

AIMS Thiopurine S-methyltransferase (TPMT) activity is polymorphic, and a trimodal distribution has been demonstrated in Caucasians (low, intermediate and high methylator groups). The TPMT gene promoter contains a variable number of three GC-rich tandem repeats, namely A, B and C, ranging from three to nine in length in a A(n)B(m)C architecture. MATERIALS & METHODS Here, we investigated the influence of number and type of TPMT gene promoter tandem repeats on human TPMT gene transcription in K562 cells transiently transfected with reporter constructs bearing various variable number of tandem repeats (VNTR) and addressed the interaction of transcription factor binding to the VNTRs by electrophoretic mobility shift assays. RESULTS We found that the distribution patterns of VNTR alleles do not significantly differ among acute lymphoblastic leukemia patients, acute myeloid leukemia patients and normal individuals. We also demonstrated that the A repeat has a negative effect in TPMT gene transcription and that a positive regulatory element, identified immediately upstream to the VNTR region of the TPMT gene promoter, is indispensable for TPMT gene transcription. Our electrophoretic mobility shift assay analysis indicated that the Sp1 and Sp3 transcription factors bind to the VNTR repeats. CONCLUSION Overall, our data underline that both the number and type of VNTRs, as well as the upstream regulatory region of the TPMT gene promoter, determine the overall level of TPMT gene transcription. It remains to be seen whether these VNTRs can be employed as pharmacogenetic markers to individualize thiopurine therapy.


Clinical Genetics | 2006

Molecular and phenotypic characteristics of patients with phenylketonuria in Serbia and Montenegro

Maja Stojiljkovic; J Jovanovic; Maja Djordjevic; S Grkovic; M Cvorkov Drazic; B Petrucev; Natasa Tosic; T Karan Djurasevic; L Stojanov; Sonja Pavlovic

Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism in Caucasians. PKU is caused by mutations in the gene encoding phenylalanine hydroxylase (PAH) enzyme. Here, we report the spectrum and the frequency of mutations in the PAH gene and discuss genotype–phenotype correlation in 34 unrelated patients with PKU from Serbia and Montenegro. Using both polymerase chain reaction–restriction fragment length polymorphism and ‘broad‐range’ denaturing‐gradient gel electrophoresis/DNA sequencing analysis, 19 disease‐causing mutations were identified, corresponding to mutation detection rate of 97%. The most frequent ones were L48S (21%), R408W (18%), P281L (9%), E390G (7%) and R261Q (6%), accounting for 60% of all mutant alleles. The genotype–phenotype correlation was studied in homozygous and functionally hemizygous patients. We found that the most frequent mutation, L48S, was exclusively associated with the classical (severe) PKU phenotype. The mutation E390G gave rise to mild PKU. For the mutation R261Q, patients had been recorded in two phenotype categories. Considering allele frequencies, PKU in Serbia and Montenegro is heterogeneous, reflecting numerous migrations over the Balkan Peninsula.


PLOS ONE | 2016

A European spectrum of pharmacogenomic biomarkers: Implications for clinical pharmacogenomics

Clint Mizzi; Eleni Dalabira; Judit Kumuthini; Nduna Dzimiri; Istvan Balogh; Nazli Basak; Ruwen Böhm; Joseph A. Borg; Paola Borgiani; Nada Bozina; Henrike Bruckmueller; Beata Burzynska; Angel Carracedo; Ingolf Cascorbi; Constantinos Deltas; Vita Dolzan; Anthony G. Fenech; Godfrey Grech; Vytautas Kasiulevičius; Ľudevít Kádaši; Vaidutis Kučinskas; Elza Khusnutdinova; Yiannis L. Loukas; Milan Macek; Halyna Makukh; Ron H.J. Mathijssen; Konstantinos Mitropoulos; Christina Mitropoulou; Giuseppe Novelli; Ioanna Papantoni

Pharmacogenomics aims to correlate inter-individual differences of drug efficacy and/or toxicity with the underlying genetic composition, particularly in genes encoding for protein factors and enzymes involved in drug metabolism and transport. In several European populations, particularly in countries with lower income, information related to the prevalence of pharmacogenomic biomarkers is incomplete or lacking. Here, we have implemented the microattribution approach to assess the pharmacogenomic biomarkers allelic spectrum in 18 European populations, mostly from developing European countries, by analyzing 1,931 pharmacogenomics biomarkers in 231 genes. Our data show significant inter-population pharmacogenomic biomarker allele frequency differences, particularly in 7 clinically actionable pharmacogenomic biomarkers in 7 European populations, affecting drug efficacy and/or toxicity of 51 medication treatment modalities. These data also reflect on the differences observed in the prevalence of high-risk genotypes in these populations, as far as common markers in the CYP2C9, CYP2C19, CYP3A5, VKORC1, SLCO1B1 and TPMT pharmacogenes are concerned. Also, our data demonstrate notable differences in predicted genotype-based warfarin dosing among these populations. Our findings can be exploited not only to develop guidelines for medical prioritization, but most importantly to facilitate integration of pharmacogenomics and to support pre-emptive pharmacogenomic testing. This may subsequently contribute towards significant cost-savings in the overall healthcare expenditure in the participating countries, where pharmacogenomics implementation proves to be cost-effective.


Pharmacogenomics | 2013

Genomic variation in the MAP3K5 gene is associated with β-thalassemia disease severity and hydroxyurea treatment efficacy

Christina Tafrali; Arsinoi Paizi; Joseph A. Borg; Milena Radmilovic; Marina Bartsakoulia; Emily Giannopoulou; Olga Giannakopoulou; Maja Stojiljković-Petrović; Branka Zukic; Konstantinos Poulas; Eleana F. Stavrou; Polyxeni Lambropoulou; Alexandra Kourakli; Alexander E Felice; Adamantia Papachatzopoulou; Sjaak Philipsen; Sonja Pavlovic; Marianthi Georgitsi; George P. Patrinos

AIM In this study we explored the association between genetic variations in MAP3K5 and PDE7B genes, residing on chromosome 6q23, and disease severity in β-hemoglobinopathy patients, as well as the association between these variants with response to hydroxyurea (HU) treatment. Furthermore, we examined MAP3K5 expression in the context of high fetal hemoglobin (HbF) and upon HU treatment in erythroid progenitor cells from healthy and KLF1 haploinsufficient individuals. MATERIALS & METHODS For this purpose, we genotyped β-thalassemia intermedia and major patients and healthy controls, as well as a cohort of compound heterozygous sickle cell disease/β-thalassemia patients receiving HU as HbF augmentation treatment. Furthermore, we examined MAP3K5 expression in the context of high HbF and upon HU treatment in erythroid progenitor cells from healthy and KLF1 haploinsufficient individuals. RESULTS A short tandem repeat in the MAP3K5 promoter and two intronic MAP3K5 gene variants, as well as a PDE7B variant, are associated with low HbF levels and a severe disease phenotype. Moreover, MAP3K5 mRNA expression levels are altered in the context of high HbF and are affected by the presence of HU. Lastly, the abovementioned MAP3K5 variants are associated with HU treatment efficacy. CONCLUSION Our data suggest that these MAP3K5 variants are indicative of β-thalassemia disease severity and response to HU treatment.


Leukemia & Lymphoma | 2008

Polymorphisms of tumor-necrosis factor-α−308 and lymphotoxin-α + 250: Possible modulation of susceptibility to apoptosis in chronic lymphocytic leukemia and non-Hodgkin lymphoma mononuclear cells

Tatjana Jevtovic-Stoimenov; Gordana Kocic; Dusica Pavlovic; Lana Macukanovic-Golubovic; Goran Marjanovic; Vidosava Djordjevic; Natasa Tosic; Sonja Pavlovic

Tumor necrosis factor alpha (TNF-α) and lymphotoxin alpha (LT-α) have been shown to play an important role in the pathogenesis of limphoproliferative disease. Both cytokines regulate cell-survival and cell-death in leukemic cells. TNF-α and LT-α are highly produced in chronic lymphotic leukemia (CLL) and non-Hodgkin lymphoma (NHL) patients. Genetic polymorphism within regulatory regions of these cytokine genes can alter their expression levels. This study investigates an influence of TNF-α−308 and LT-α + 250 polymorphisms on the activity of alkaline DNase in mononuclear cells of both patient groups as a potent biochemical marker of DNA fragmentation in the terminal phase of apoptosis. Study was performed on mononuclear cells of CLL and NHL patients. SNP were obtained by PCR-RFLP method. The activity of alkaline DNase was measured by spectrophotometric method. The study provided evidence of the influence of TNFG/A genotype and A alleles in the susceptibility to NHL, since the association of LT-αG/G genotype with CLL was observed. High-producing TNF-α−308/LT-α + 250 heterozygous haplotype is associated with high NHL incidence. The investigated SNP influence the activity of alkaline DNase in CLL and NHL patients. The observed polymorphisms may modulate susceptibility of leukemic cells to apoptosis by way of DNase activity.

Collaboration


Dive into the Sonja Pavlovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge