Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonja Schrepfer is active.

Publication


Featured researches published by Sonja Schrepfer.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts

Rutger-Jan Swijnenburg; Sonja Schrepfer; Johannes A. Govaert; Feng Cao; Katie Ransohoff; Ahmad Y. Sheikh; Munif Haddad; Andrew J. Connolly; Mark M. Davis; Robert C. Robbins; Joseph C. Wu

Given their self-renewing and pluripotent capabilities, human embryonic stem cells (hESCs) are well poised as a cellular source for tissue regeneration therapy. However, the host immune response against transplanted hESCs is not well characterized. In fact, controversy remains as to whether hESCs have immune-privileged properties. To address this issue, we used in vivo bioluminescent imaging to track the fate of transplanted hESCs stably transduced with a double-fusion reporter gene consisting of firefly luciferase and enhanced GFP. We show that survival after transplant is significantly limited in immunocompetent as opposed to immunodeficient mice. Repeated transplantation of hESCs into immunocompetent hosts results in accelerated hESC death, suggesting an adaptive donor-specific immune response. Our data demonstrate that transplanted hESCs trigger robust cellular and humoral immune responses, resulting in intragraft infiltration of inflammatory cells and subsequent hESC rejection. Moreover, we have found CD4+ T cells to be an important modulator of hESC immune-mediated rejection. Finally, we show that immunosuppressive drug regimens can mitigate the anti-hESC immune response and that a regimen of combined tacrolimus and sirolimus therapies significantly prolongs survival of hESCs for up to 28 days. Taken together, these data suggest that hESCs are immunogenic, trigger both cellular and humoral-mediated pathways, and, as a result, are rapidly rejected in xenogeneic hosts. This process can be mitigated by a combined immunosuppressive regimen as assessed by molecular imaging approaches.


Circulation | 2008

Comparison of Different Adult Stem Cell Types for Treatment of Myocardial Ischemia

Koen E.A. van der Bogt; Ahmad Y. Sheikh; Sonja Schrepfer; Grant Hoyt; Feng Cao; Katherine J. Ransohoff; Rutger-Jan Swijnenburg; Jeremy Pearl; Andrew Lee; Michael P. Fischbein; Christopher H. Contag; Robert C. Robbins; Joseph C. Wu

Background— A comparative analysis of the efficacy of different cell candidates for the treatment of heart disease remains to be described. This study is designed to evaluate the therapeutic efficacy of 4 cell types in a murine model of myocardial infarction. Methods and Results— Bone marrow mononuclear cells (MN), mesenchymal stem cells (MSC), skeletal myoblasts (SkMb), and fibroblasts (Fibro) expressing firefly luciferase (Fluc) and green fluorescence protein (GFP) were characterized by flow cytometry, bioluminescence imaging (BLI), and luminometry. Female FVB mice (n=70) underwent LAD ligation and intramyocardially received one cell type (5×105) or PBS. Cell survival was measured by BLI and by TaqMan PCR. Cardiac function was assessed by echocardiography and invasive hemodynamic measurements. Fluc expression correlated with cell number in all groups (r2>0.93). In vivo BLI revealed acute donor cell death of MSC, SkMb, and Fibro within 3 weeks after transplantation. By contrast, cardiac signals were still present after 6 weeks in the MN group, as confirmed by TaqMan PCR (P<0.01). Echocardiography showed significant preservation of fractional shortening in the MN group compared to controls (P<0.05). Measurements of left ventricular end-systolic/diastolic volumes revealed that the least amount of ventricular dilatation occurred in the MN group (P<0.05). Histology confirmed the presence of MN, although there was no evidence of transdifferentiation by donor MN into cardiomyocytes. Conclusions— This is the first study to show that compared to MSC, SkMB, and Fibro, MN exhibit a more favorable survival pattern, which translates into a more robust preservation of cardiac function.


Cell Transplantation | 2011

Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells.

T. Deuse; Mandy Stubbendorff; K.R. Tang-Quan; Neil Phillips; Mark A. Kay; Thomas Eiermann; Thang T. Phan; Hans-Dieter Volk; Hermann Reichenspurner; Robert C. Robbins; Sonja Schrepfer

We here present an immunologic head-to-head comparison between human umbilical cord lining mesenchymal stem cells (clMSCs) and adult bone marrow MSCs (bmMSCs) from patients >65 years of age. clMSCs had significantly lower HLA class I expression, higher production of tolerogenic TGF-β and IL-10, and showed significantly faster proliferation. In vitro activation of allogeneic lymphocytes and xenogeneic in vivo immune activation was significantly stronger with bmMSCs, whereas immune recognition of clMSCs was significantly weaker. Thus, bmMSCs were more quickly rejected in immunocompetent mice. IFN-γ at 25 ng/ml increased both immunogenicity by upregulation of HLA class I/HLA-DR expression and tolerogenicity by increasing intracellular HLA-G and surface HLA-E expression, augmenting TGF-β and IL-10 release, and inducing indoleamine 2,3-dioxygenase (IDO) expression. Higher concentrations of IFN-γ (>50 ng/ml) further enhanced the immunosuppressive phenotype of clMSCs, more strongly downregulating HLA-DR expression and further increasing IDO production (at 500 ng/ml). The net functional immunosuppressive efficacy of MSCs was tested in mixed lymphocyte cultures. Although both clMSCs and bmMSCs significantly reduced in vitro immune activation, clMSCs were significantly more effective than bmMSCs. The veto function of both MSC lines was enhanced in escalating IFN-γ environments. In conclusion, clMSCs show a more beneficial immunogeneic profile and stronger overall immunosuppressive potential than aged bmMSCs.


Circulation Research | 2013

Effects of Intracoronary CD34+ Stem Cell Transplantation in Nonischemic Dilated Cardiomyopathy Patients 5-Year Follow-Up

Bojan Vrtovec; Gregor Poglajen; Luka Lezaic; Matjaz Sever; Dragoslav Domanovic; Peter Cernelc; Aljaz Socan; Sonja Schrepfer; Guillermo Torre-Amione; Francois Haddad; Joseph C. Wu

Rationale: CD34+ transplantation in dilated cardiomyopathy was associated with short-term improvement in left ventricular ejection fraction and exercise tolerance. Objective: We investigated long-term effects of intracoronary CD34+ cell transplantation in dilated cardiomyopathy and the relationship between intramyocardial cell homing and clinical response. Methods and Results: Of 110 dilated cardiomyopathy patients, 55 were randomized to receive CD34+ stem cell transplantation (SC group) and 55 received no cell therapy (controls). In the SC group, CD34+ cells were mobilized by granulocyte colony-stimulating factor and collected via apheresis. Patients underwent myocardial scintigraphy and cells were injected in the artery supplying segments with the greatest perfusion defect. At baseline, 2 groups did not differ in age, sex, left ventricular ejection fraction, or N-terminal B-type natriuretic peptide levels. At 5 years, stem cell therapy was associated with increased left ventricular ejection fraction (from 24.3 ± 6.5% to 30.0 ± 5.1%; P=0.02), increased 6-minute walk distance (from 344 ± 90 m to 477 ± 130 m; P<0.001), and decreased N-terminal B-type natriuretic peptide (from 2322 ± 1234 pg/mL to 1011 ± 893 pg/mL; P<0.01). Left ventricular ejection fraction improvement was more significant in patients with higher myocardial homing of injected cells. During follow-up, 27 (25%) patients died and 9 (8%) underwent heart transplantation. Of the 27 deaths, 13 were attributed to pump failure and 14 were attributed to sudden cardiac death. Total mortality was lower in the SC group (14%) than in controls (35%; P=0.01). The same was true of pump failure (5% vs 18%; P=0.03), but not of sudden cardiac death (9% vs 16%; P=0.39). Conclusions: Intracoronary stem cell transplantation may be associated with improved ventricular function, exercise tolerance, and long-term survival in patients with dilated cardiomyopathy. Higher intramyocardial homing is associated with better stem cell therapy response.


Circulation | 2009

Hepatocyte Growth Factor or Vascular Endothelial Growth Factor Gene Transfer Maximizes Mesenchymal Stem Cell–Based Myocardial Salvage After Acute Myocardial Infarction

T. Deuse; Christoph Peter; Paul W.M. Fedak; Timothy C. Doyle; Hermann Reichenspurner; Wolfram H. Zimmermann; Thomas Eschenhagen; William Stein; Joseph C. Wu; Robert C. Robbins; Sonja Schrepfer

Background— Mesenchymal stem cell (MSC)-based regenerative strategies were investigated to treat acute myocardial infarction and improve left ventricular function. Methods and Results— Murine AMI was induced by coronary ligation with subsequent injection of MSCs, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), or MSCs +HGF/VEGF into the border zone. Left ventricular ejection fraction was calculated using micro–computed tomography imaging after 6 months. HGF and VEGF protein injection (with or without concomitant MSC injection) significantly and similarly improved the left ventricular ejection fraction and reduced scar size compared with the MSC group, suggesting that myocardial recovery was due to the cytokines rather than myocardial regeneration. To provide sustained paracrine effects, HGF or VEGF overexpressing MSCs were generated (MSC-HGF, MSC-VEGF). MSC-HGF and MSC-VEGF showed significantly increased in vitro proliferation and increased in vivo proliferation within the border zone. Cytokine production correlated with MSC survival. MSC-HGF– and MSC-VEGF–treated animals showed smaller scar sizes, increased peri-infarct vessel densities, and better preserved left ventricular function when compared with MSCs transfected with empty vector. Murine cardiomyocytes were exposed to hypoxic in vitro conditions. The LDH release was reduced, fewer cardiomyocytes were apoptotic, and Akt activity was increased if cardiomyocytes were maintained in conditioned medium obtained from MSC-HGF or MSC-VEGF cultures. Conclusions— This study showed that (1) elevating the tissue levels of HGF and VEGF after acute myocardial infarction seems to be a promising reparative therapeutic approach, (2) HGF and VEGF are cardioprotective by increasing the tolerance of cardiomyocytes to ischemia, reducing cardiomyocyte apoptosis and increasing prosurvival Akt activation, and (3) MSC-HGF and MSC-VEGF are a valuable source for increased cytokine production and maximize the beneficial effect of MSC-based repair strategies.


Circulation | 2006

Heparins Increase Endothelial Nitric Oxide Bioavailability by Liberating Vessel-Immobilized Myeloperoxidase

Stephan Baldus; Volker Rudolph; Mika Roiss; Wulf D. Ito; Tanja K. Rudolph; Jason P. Eiserich; Karsten Sydow; Denise Lau; Katalin Szöcs; Anna Klinke; Lukáš Kubala; Lars Berglund; Sonja Schrepfer; T. Deuse; Munif Haddad; Tim Risius; Hanno U. Klemm; Hermann Reichenspurner; Thomas Meinertz; Thomas Heitzer

Background— Neutrophils and monocytes are centrally linked to vascular inflammatory disease, and leukocyte-derived myeloperoxidase (MPO) has emerged as an important mechanistic participant in impaired vasomotor function. MPO binds to and transcytoses endothelial cells in a glycosaminoglycan-dependent manner, and MPO binding to the vessel wall is a prerequisite for MPO-dependent oxidation of endothelium-derived nitric oxide (NO) and impairment of endothelial function in animal models. In the present study, we investigated whether heparin mobilizes MPO from vascular compartments in humans and defined whether this translates into increased vascular NO bioavailability and function. Methods and Results— Plasma MPO levels before and after heparin administration were assessed by ELISA in 109 patients undergoing coronary angiography. Whereas baseline plasma MPO levels did not differ between patients with or without angiographically detectable coronary artery disease (CAD), the increase in MPO plasma content on bolus heparin administration was higher in patients with CAD (P=0.01). Heparin treatment also improved endothelial NO bioavailability, as evidenced by flow-mediated dilation (P<0.01) and by acetylcholine-induced changes in forearm blood flow (P<0.01). The extent of heparin-induced MPO release was correlated with improvement in endothelial function (r=0.69, P<0.01). Moreover, and consistent with this tenet, ex vivo heparin treatment of extracellular matrix proteins, cultured endothelial cells, and saphenous vein graft specimens from CAD patients decreased MPO burden. Conclusions— Mobilization of vessel-associated MPO may represent an important mechanism by which heparins exert antiinflammatory effects and increase vascular NO bioavailability. These data add to the growing body of evidence for a causal role of MPO in compromised vascular NO signaling in humans.


Transplantation | 2009

Comparison of Transplantation of Adipose Tissue- and Bone Marrow- Derived Mesenchymal Stem Cells in the Infarcted Heart

Koen E.A. van der Bogt; Sonja Schrepfer; Jin Yu; Ahmad Y. Sheikh; Grant Hoyt; Johannes A. Govaert; Christopher H. Contag; Robert C. Robbins; Joseph C. Wu

Background. Mesenchymal stem cells hold promise for cardiovascular regenerative therapy. Derivation of these cells from the adipose tissue might be easier compared with bone marrow. However, the in vivo fate and function of adipose stromal cells (ASC) in the infarcted heart has never been compared directly to bone marrow-derived mesenchymal cells (MSC). Methods. ASC and MSC were isolated from transgenic FVB mice with a &bgr;-actin promoter driving firefly luciferase and green fluorescent protein double fusion reporter gene, and they were characterized using flow cytometry, microscopy, bioluminescence imaging and luminometry. FVB mice (n=8 per group) underwent myocardial infarction followed by intramyocardial injection of 5×105 ASC, MSC, fibroblasts (Fibro, positive control), or saline (negative control). Cell survival was measured using bioluminescence imaging for 6 weeks and cardiac function was monitored by echocardiography and pressure-volume analysis. Ventricular morphology was assessed using histology. Results. ASC and MSC were CD34−, CD45−, c-Kit−, CD90+, Sca-1+, shared similar morphology and had a population doubling time of ∼2 days. Cells expressed Fluc reporter genes in a number-dependent fashion as confirmed by luminometry. After cardiac transplantation, both cell types showed drastic donor cell death within 4 to 5 weeks. Furthermore, transplantation of either cell type was not capable of preserving ventricular function and dimensions, as confirmed by pressure-volume-loops and histology. Conclusion. This is the first study comparing the in vivo behavior of both cell types in the infarcted heart. ASC and MSC do not tolerate well in the cardiac environment, resulting in acute donor cell death and a subsequent loss of cardiac function similar to control groups.


Stem Cells and Development | 2008

In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation.

Rutger-Jan Swijnenburg; Sonja Schrepfer; Feng Cao; Jeremy Pearl; Xiaoyan Xie; Andrew J. Connolly; Robert C. Robbins; Joseph C. Wu

Embryonic stem cell (ESC)-based transplantation is considered a promising novel therapy for a variety of diseases. This is bolstered by the suggested immune-privileged properties of ESCs. In this study, we used in vivo bioluminescent imaging (BLI) to non-invasively track the fate of transplanted murine ESCs (mESCs), which are stably transduced with a double fusion reporter gene consisting of firefly luciferase (FLuc) and enhanced green fluorescent protein (eGFP). Following syngeneic intramuscular transplantation of 1 x 10(6) mESCs, the cells survived and differentiated into teratomas. In contrast, allogeneic mESC transplants were infiltrated by a variety of inflammatory cells, leading to rejection within 28 days. Acceleration of rejection was observed when mESCs were allotransplanted following prior sensitization of the host. Finally, we demonstrate that the mESC derivatives were more rapidly rejected compared to undifferentiated mESCs. These data show that mESCs do not retain immune-privileged properties in vivo and are subject to immunological rejection as assessed by novel molecular imaging approaches.


Nature Communications | 2014

miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development

Lars Maegdefessel; Joshua M. Spin; Uwe Raaz; Suzanne M. Eken; Ryuji Toh; Junya Azuma; Matti Adam; Futoshi Nakagami; Helen M. Heymann; Ekaterina Chernogubova; Hong Jin; Joy Roy; Rebecka Hultgren; Kenneth Caidahl; Sonja Schrepfer; Anders Hamsten; Per Eriksson; Michael V. McConnell; Ronald L. Dalman; Philip S. Tsao

Identification and treatment of abdominal aortic aneurysm (AAA) remain among the most prominent challenges in vascular medicine. MicroRNAs (miRNAs) are crucial regulators of cardiovascular pathology and represent intriguing targets to limit AAA expansion. Here we show, by using two established murine models of AAA disease along with human aortic tissue and plasma analysis, that miR-24 is a key regulator of vascular inflammation and AAA pathology. In vivo and in vitro studies reveal chitinase 3-like 1 (Chi3l1) to be a major target and effector under the control of miR-24, regulating cytokine synthesis in macrophages as well as their survival, promoting aortic smooth muscle cell migration and cytokine production, and stimulating adhesion molecule expression in vascular endothelial cells. We further show that modulation of miR-24 alters AAA progression in animal models, and that miR-24 and CHI3L1 represent novel plasma biomarkers of AAA disease progression in humans.


Thoracic and Cardiovascular Surgeon | 2010

Angiogenic Effects Despite Limited Cell Survival of Bone Marrow-Derived Mesenchymal Stem Cells under Ischemia

J. Hoffmann; A. J. Glassford; Timothy C. Doyle; R.C. Robbins; Sonja Schrepfer; Marc P. Pelletier

Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent and secrete angiogenic factors, which could help patients with occlusive arterial diseases. We hypothesize that MSCs, in comparison to fibroblasts, survive better under hypoxic conditions in vitro and in vivo. MSCs and fibroblasts from L2G mice expressing firefly luciferase and GFP were cultured in normoxic and hypoxic conditions for 24 hours. In vitro cell viability was tested by detecting apoptosis and necrosis. MSCs released higher amounts of VEGF (281.1 +/- 62.6 pg/ml) under hypoxic conditions compared to normoxia (154.9 +/- 52.3 pg/ml, p = NS), but were less tolerant to hypoxia (45 +/- 7.9%) than fibroblasts (28.1 +/- 3.6%, p = NS). A hindlimb ischemia model was created by ligating the femoral artery of 18 FVB mice. After one week, 1 x 106 cells (MSCs, fibroblasts or saline) were injected into the limb muscles of each animal (n = 6 per group). Bioluminescence measurement to assess the viability of luciferase positive cells showed significant proliferation of MSCs on day four compared to fibroblasts (p = 0.001). Three weeks after cell delivery, the capillary to muscle fiber ratio of ischemic areas was analyzed. In the MSC group, vessel density was significantly higher than in the fibroblast or control group (0.5 +/- 0.08 and 0.3 +/- 0.03). Under hypoxia, MSCs produced more VEGF compared to normal conditions and MSC transplantation into murine ischemic limbs led to an increase in vessel density, although MSC survival was limited. This study suggests that MSC transplantation may be an effective and clinically relevant tool in the therapy of occlusive arterial diseases.

Collaboration


Dive into the Sonja Schrepfer's collaboration.

Top Co-Authors

Avatar

T. Deuse

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

X. Hua

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge