Sonnet S. Jonker
Oregon Health & Science University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sonnet S. Jonker.
The Journal of Physiology | 2007
Samantha Louey; Sonnet S. Jonker; George D. Giraud; Kent L. Thornburg
Umbilicoplacental embolization (UPE) in sheep has been used to investigate the effects of placental insufficiency on fetal development. However, its specific effects on the heart have been little studied. The aim of this study was to determine the effects of placental insufficiency, induced by UPE, on cardiomyocyte size, maturation and proliferation. Instrumented fetal sheep underwent UPE for either 10 or 20 days. Hearts were collected at 125 ± 1 days (10 day group) or 136 ± 1 days (20 day group) of gestation (term ∼145 days). Cell size, maturational state (as measured by the proportion of binucleated myocytes) and cell cycle activity (as measured by positive staining of cells for Ki‐67) were determined in dissociated cardiomyocytes. UPE fetuses were hypoxaemic, but mean arterial pressures were not different from controls. UPE fetuses were lighter than control fetuses (10 days: −21%, P < 0.05; 20 days: −27%, P < 0.01) and had smaller hearts, but heart weight was appropriate for body weight. Neither lengths nor widths were different between control and UPE cardiomyocytes at either age. Ten days of UPE did not significantly alter the proportion of binucleated myocytes or cell cycle activity in either ventricle. However, 20 days of UPE reduced cell cycle activity in both ventricles by ∼70% (P < 0.05); the proportion of binucleated myocytes was also lower in UPE fetuses at this age (left ventricle: 31.1 ± 12.0 versus 46.0 ± 6.6%, P < 0.05; right ventricle: 29.4 ± 12.3 versus 46.3 ± 5.3%, P < 0.05). It is concluded that in the absence of fetal arterial hypertension, placental insufficiency is associated with substantially depressed growth of the heart through suppressed proliferation and maturation of cardiomyocytes.
Progress in Biophysics & Molecular Biology | 2011
Kent L. Thornburg; Sonnet S. Jonker; Perrie O’Tierney; Natasha N Chattergoon; Samantha Louey; J. Job Faber; George D. Giraud
During fetal life the myocardium expands through replication of cardiomyocytes. In sheep, cardiomyocytes begin the process of becoming terminally differentiated at about 100 gestation days out of 145 days term. In this final step of development, cardiomyocytes become binucleated and stop dividing. The number of cells at birth is important in determining the number of cardiomyocytes for life. Therefore, the regulation of cardiomyocyte growth in the womb is critical to long term disease outcome. Growth factors that stimulate proliferation of fetal cardiomyocytes include angiotensin II, cortisol and insulin-like growth factor-1. Increased ventricular wall stress leads to short term increases in proliferation but longer-term loss of cardiomyocyte generative capacity. Two normally circulating hormones have been identified that suppress proliferation: atrial natriuretic peptide (ANP) and tri-iodo-L-thyronine (T₃). Atrial natriuretic peptide signals through the NPRA receptor that serves as a guanylate cyclase and signals through cGMP. ANP powerfully suppresses mitotic activity in cardiomyocytes in the presence of angiotensin II in culture. Addition of a cGMP analog has the same effect as ANP. ANP suppresses both the extracellular receptor kinases and the phosphoinositol-3 kinase pathways. T₃ also suppresses increased mitotic activity of stimulated cardiomyocytes but does so by increasing the cell cycle suppressant, p21, and decreasing the cell cycle activator, cyclin D1.
Experimental Physiology | 2010
Sonnet S. Jonker; M. Kathryn Giraud; George D. Giraud; Natasha N Chattergoon; Samantha Louey; Lowell Davis; J. Job Faber; Kent L. Thornburg
Chronic anaemia increases the workload of the growing fetal heart, leading to cardiac enlargement. To determine which cellular process increases cardiac mass, we measured cardiomyocyte sizes, binucleation as an index of terminal differentiation, and tissue volume fractions in hearts from control and anaemic fetal sheep. Fourteen chronically catheterized fetal sheep at 129 days gestation had blood withdrawn for 9 days to cause severe anaemia; 14 control fetuses were of similar age. At postmortem examination, hearts were either enzymatically dissociated or fixed for morphometric analysis. Daily isovolumetric haemorrhage reduced fetal haematocrit from a baseline value of 35% to 15% on the final day (P < 0.001). At the study conclusion, anaemic fetuses had lower arterial pressures than control fetuses (P < 0.05). Heart weights were increased by 39% in anaemic fetuses compared with control hearts (P < 0.0001), although the groups had similar body weights; the heart weight difference was not due to increased ventricular wall water content or disproportionate non‐myocyte tissue expansion. Cardiomyocytes from anaemic fetuses tended to be larger than those of control fetuses. There were no statistically significant differences between groups in the cardiomyocyte cell cycle activity. The degree of terminal differentiation was greater in the right ventricle of anaemic compared with control fetuses by ∼8% (P < 0.05). Anaemia substantially increased heart weight in fetal sheep. The volume proportions of connective and vascular tissue were unchanged. Cardiomyocyte mass expanded by a balanced combination of cellular enlargement, increased terminal differentiation and accelerated proliferation.
Experimental Physiology | 2003
Sonnet S. Jonker; Lowell Davis; J. D. W. van der Bilt; B. Hadder; Ar Hohimer; George D. Giraud; Kent L. Thornburg
Interstitial fluid fluxes are much greater in the fetus than in the adult, and filtration rates are increased over control in most tissues of the anaemic fetus. Increased capillary filtration may lead to cardiac oedema which, in turn, severely impacts cardiac function. Mechanisms that underlie these differences in flux are incompletely understood. One possible mechanism is an increase in capillary water permeability. Therefore, the goal of our study was to determine the level of expression of the water channel aquaporin 1 (AQP1) during cardiac development and in the anaemic fetal sheep heart. Hearts from chronically instrumented anaemic sheep fetuses and hearts from normal early fetal, late fetal, neonatal and adult sheep were used for Northern and Western analyses and immunohistochemistry. We found that AQP1 mRNA levels were lower in the young fetal left ventricle than in the adult left ventricle (P < 0.05). We also found that cardiac AQP1 expression was increased in anaemic fetuses compared to age‐matched controls (P < 0.05). Expression of AQP1 in all groups was greatest in the microvascular endothelium. These data suggest that AQP1 plays an important role in the physiological accommodation to fetal anaemia.
Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2010
Dane A. Crossley; Sonnet S. Jonker; James W. Hicks; Kent L. Thornburg
Angiotensin II (Ang II) is an important regulator of cardiovascular function in adult vertebrates. Although its role in regulating the adult system has been extensively investigated, the cardiovascular response to Ang II in embryonic vertebrates is relatively unknown. We investigated the potential of Ang II as a regulator of cardiovascular function in embryonic chickens, which lack central nervous system control of cardiovascular function throughout the majority of incubation. The cardiovascular response to Ang II in embryonic chickens was investigated over the final 50% of their development. Ang II produced a dose-dependent increase in arterial pressure on each day of development studied, and the response increased in intensity as development progressed. The Ang II type-1 receptor nonspecific competitive peptide antagonist [Sar1 ile8] Ang II blocked the cardiovascular response to subsequent injections of Ang II on day 21 only. The embryonic pressure response to Ang II (hypertension only) differed from that of adult chickens, in which initial hypotension is followed by hypertension. The constant level of gene expression for the Ang II receptor, in conjunction with an increasing pressure response to the peptide, suggests that two Ang II receptor subtypes are present during chicken development. Collectively, the data indicate that Ang II plays an important role in the cardiovascular development of chickens; however, its role in maintaining basal function requires further study.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013
Debra F. Anderson; Sonnet S. Jonker; Samantha Louey; Cecilia Y. Cheung; Robert A. Brace
Our objective was to test the hypothesis that fetal urine contains a substance(s) that regulates amniotic fluid volume by altering the rate of intramembranous absorption of amniotic fluid. In late gestation ovine fetuses, amniotic fluid volumes, urine, and lung liquid production rates, swallowed volumes and intramembranous volume and solute absorption rates were measured over 2-day periods under control conditions and when urine was removed and continuously replaced at an equal rate with exogenous fluid. Intramembranous volume absorption rate decreased by 40% when urine was replaced with lactated Ringer solution or lactated Ringer solution diluted 50% with water. Amniotic fluid volume doubled under both conditions. Analysis of the intramembranous sodium and chloride fluxes suggests that the active but not passive component of intramembranous volume absorption was altered by urine replacement, whereas both active and passive components of solute fluxes were altered. We conclude that fetal urine contains an unidentified substance(s) that stimulates active intramembranous transport of amniotic fluid across the amnion into the underlying fetal vasculature and thereby functions as a regulator of amniotic fluid volume.
The FASEB Journal | 2015
Sonnet S. Jonker; Samantha Louey; George D. Giraud; Kent L. Thornburg; J. Job Faber
Studies in altricial rodents attribute dramatic changes in perinatal cardiomyocyte growth, maturation, and attrition to stimuli associated with birth. Our purpose was to determine whether birth is a critical trigger controlling perinatal cardiomyocyte growth, maturation and attrition in a precocial large mammal, sheep (Ovis artes) . Hearts from 0‐61 d postnatal lambs were dissected or enzymatically dissociated. Cardiomyocytes were measured by micromorphometry, cell cycle activity assessed by immunohistochemistry, and nuclear number counted after DNA staining. Integration of this new data with published fetal data from our laboratory demonstrate that a newly appreciated >30% decrease in myocyte number occurred in the last 10 d of gestation (P < 0.0005) concomitant with an increase in cleaved poly (ADP‐ribose) polymerase 1 (P< 0.05), indicative of apoptosis. Bisegmental linear regressions show that most changes in myocyte growth kinetics occur before birth (median = 15.2 d; P< 0.05). Right ventricular but not left ventricular cell number increases in the neonate, by 68% between birth and 60 d postnatal (P = 0.028). We conclude that in sheep few developmental changes in cardiomyocytes result from birth, excepting the different postnatal degrees of free wall hypertrophy between the ventricles. Furthermore, myocyte number is reduced in both ventricles immediately before term, but proliferation increases myocyte number in the neonatal right ventricle.—Jonker, S. S., Louey, S., Giraud, G. D., Thornburg, K. L., Faber, J. J. Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep. FASEB J. 29, 4346‐4357 (2015). www.fasebj.org
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015
Sonnet S. Jonker; George D. Giraud; Herbert M. Espinoza; Erica N. Davis; Dane A. Crossley
Hypoxia is a common component of many developmental insults and has been studied in early-stage chicken development. However, its impact on cardiac function and arterial-ventricular coupling in late-stage chickens is relatively unknown. To test the hypothesis that hypoxic incubation would reduce baseline cardiac function but protect the heart during acute hypoxia in late-stage chickens, white Leghorn eggs were incubated at 21% O2 or 15% O2. At 90% of incubation (19 days), hypoxic incubation caused growth restriction (-20%) and increased the LV-to-body ratio (+41%). Left ventricular (LV) pressure-volume loops were measured in anesthetized chickens in normoxia and acute hypoxia (10% O2). Hypoxic incubation lowered the maximal rate of pressure generation (ΔP/ΔtMax; -22%) and output (-57%), whereas increasing end-systolic elastance (ELV; +31%) and arterial elastance (EA; +122%) at similar heart rates to normoxic incubation. Both hypoxic incubation and acute hypoxia lengthened the half-time of relaxation (τ; +24%). Acute hypoxia reduced heart rate (-8%) and increased end-diastolic pressure (+35%). Hearts were collected for mRNA analysis. Hypoxic incubation was marked by decreased mRNA expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase 2, Na(+)/Ca(2+) exchanger 1, phospholamban, and ryanodine receptor. In summary, hypoxic incubation reduces LV function in the late-stage chicken by slowing pressure generation and relaxation, which may be driven by altered intracellular excitation-contraction coupling. Cardiac efficiency is greatly reduced after hypoxic incubation. In both incubation groups acute hypoxia reduced diastolic function.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2017
Joshua S. Benjamin; Christine B Culpepper; Laura D. Brown; Stephanie R. Wesolowski; Sonnet S. Jonker; Melissa A. Davis; Sean W. Limesand; Randall B. Wilkening; William W. Hay; Paul J. Rozance
Fetal insulin secretion is inhibited by acute hypoxemia. The relationship between prolonged hypoxemia and insulin secretion, however, is less well defined. To test the hypothesis that prolonged fetal hypoxemia impairs insulin secretion, studies were performed in sheep fetuses that were bled to anemic conditions for 9 ± 0 days (anemic, n = 19) and compared with control fetuses (n = 15). Arterial hematocrit and oxygen content were 34% and 52% lower, respectively, in anemic vs. control fetuses (P < 0.0001). Plasma glucose concentrations were 21% higher in the anemic group (P < 0.05). Plasma norepinephrine and cortisol concentrations increased 70% in the anemic group (P < 0.05). Glucose-, arginine-, and leucine-stimulated insulin secretion all were lower (P < 0.05) in anemic fetuses. No differences in pancreatic islet size or β-cell mass were found. In vitro, isolated islets from anemic fetuses secreted insulin in response to glucose and leucine as well as control fetal islets. These findings indicate a functional islet defect in anemic fetuses, which likely involves direct effects of low oxygen and/or increased norepinephrine on insulin release. In pregnancies complicated by chronic fetal hypoxemia, increasing fetal oxygen concentrations may improve insulin secretion.
The Journal of Physiology | 2016
Sonnet S. Jonker; Lowell Davis; Divya Soman; J. Todd Belcik; Brian P. Davidson; Tamara M. Atkinson; Adrienne Wilburn; Samantha Louey; George D. Giraud; Jonathan R. Lindner
In fetuses, chronic anaemia stimulates cardiac growth; simultaneously, blood flow to the heart muscle itself is increased, and reserve blood flow capacity of the coronary vascular bed is preserved. Here we examined functional adaptations of the capillaries and small blood vessels responsible for delivering oxygen to the anaemic fetal heart muscle using contrast‐enhanced echocardiography. We demonstrate that coronary microvascular flux rate doubled in anaemic fetuses compared to control fetuses, both at rest and during maximal flow, suggesting reduced microvascular resistance consistent with capillary widening. Cardiac fractional microvascular blood volume was not greater in anaemic fetuses, suggesting that growth of new microvascular vessels does not contribute to the increased flow per volume of myocardium. These unusual changes in microvascular function during anaemia may indicate novel adaptive strategies in the fetal heart.