Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soo-Je Park is active.

Publication


Featured researches published by Soo-Je Park.


Applied and Environmental Microbiology | 2011

Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil

Man-Young Jung; Soo-Je Park; Deullae Min; Jin-Seog Kim; W. Irene C. Rijpstra; Jaap S. Sinninghe Damsté; Geun-Joong Kim; Eugene L. Madsen; Sung-Keun Rhee

ABSTRACT Soil nitrification is an important process for agricultural productivity and environmental pollution. Though one cultivated representative of ammonia-oxidizing Archaea from soil has been described, additional representatives warrant characterization. We describe an ammonia-oxidizing archaeon (strain MY1) in a highly enriched culture derived from agricultural soil. Fluorescence in situ hybridization microscopy showed that, after 2 years of enrichment, the culture was composed of >90% archaeal cells. Clone libraries of both 16S rRNA and archaeal amoA genes featured a single sequence each. No bacterial amoA genes could be detected by PCR. A [13C]bicarbonate assimilation assay showed stoichiometric incorporation of 13C into Archaea-specific glycerol dialkyl glycerol tetraethers. Strain MY1 falls phylogenetically within crenarchaeal group I.1a; sequence comparisons to “Candidatus Nitrosopumilus maritimus” revealed 96.9% 16S rRNA and 89.2% amoA gene similarities. Completed growth assays showed strain MY1 to be chemoautotrophic, mesophilic (optimum at 25°C), neutrophilic (optimum at pH 6.5 to 7.0), and nonhalophilic (optimum at 0.2 to 0.4% salinity). Kinetic respirometry assays showed that strain MY1s affinities for ammonia and oxygen were much higher than those of ammonia-oxidizing bacteria (AOB). The yield of the greenhouse gas N2O in the strain MY1 culture was lower but comparable to that of soil AOB. We propose that this new soil ammonia-oxidizing archaeon be designated “Candidatus Nitrosoarchaeum koreensis.”


Applied and Environmental Microbiology | 2010

Cultivation of Autotrophic Ammonia-Oxidizing Archaea from Marine Sediments in Coculture with Sulfur-Oxidizing Bacteria

Byoung-Joon Park; Soo-Je Park; Dae-No Yoon; Stefan Schouten; Jaap S. Sinninghe Damsté; Sung-Keun Rhee

ABSTRACT The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [13C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments.


Applied and Environmental Microbiology | 2011

Core and Intact Polar Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Ammonia-Oxidizing Archaea Enriched from Marine and Estuarine Sediments

Angela Pitcher; Ellen C. Hopmans; Annika C. Mosier; Soo-Je Park; Sung-Keun Rhee; Christopher A. Francis; Stefan Schouten; Jaap S. Sinninghe Damsté

ABSTRACT Glycerol dibiphytanyl glycerol tetraether (GDGT)-based intact membrane lipids are increasingly being used as complements to conventional molecular methods in ecological studies of ammonia-oxidizing archaea (AOA) in the marine environment. However, the few studies that have been done on the detailed lipid structures synthesized by AOA in (enrichment) culture are based on species enriched from nonmarine environments, i.e., a hot spring, an aquarium filter, and a sponge. Here we have analyzed core and intact polar lipid (IPL)-GDGTs synthesized by three newly available AOA enriched directly from marine sediments taken from the San Francisco Bay estuary (“Candidatus Nitrosoarchaeum limnia”), and coastal marine sediments from Svalbard, Norway, and South Korea. Like previously screened AOA, the sedimentary AOA all synthesize crenarchaeol (a GDGT containing a cyclohexane moiety and four cyclopentane moieties) as a major core GDGT, thereby supporting the hypothesis that crenarchaeol is a biomarker lipid for AOA. The IPL headgroups synthesized by sedimentary AOA comprised mainly monohexose, dihexose, phosphohexose, and hexose-phosphohexose moieties. The hexose-phosphohexose headgroup bound to crenarchaeol was common to all enrichments and, in fact, the only IPL common to every AOA enrichment analyzed to date. This apparent specificity, in combination with its inferred lability, suggests that it may be the most suitable biomarker lipid to trace living AOA. GDGTs bound to headgroups with a mass of 180 Da of unknown structure appear to be specific to the marine group I.1a AOA: they were synthesized by all three sedimentary AOA and “Candidatus Nitrosopumilus maritimus”; however, they were absent in the group I.1b AOA “Candidatus Nitrososphaera gargensis.”


The ISME Journal | 2014

Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils

Man-Young Jung; Reinhard Well; Deullae Min; Anette Giesemann; Soo-Je Park; Jong-Geol Kim; So-Jeong Kim; Sung-Keun Rhee

N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ15Nbulk and δ18O -N2O of soil AOA strains were 13–30%, −13 to −35% and 22–36%, respectively, and strains MY1–3 and other soil AOA strains had distinct isotopic signatures. A 15N-NH4+-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA.


Environmental Microbiology | 2014

Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis

So-Jeong Kim; Soo-Je Park; In-Tae Cha; Deullae Min; Jin-Seog Kim; Won-Hyung Chung; Jong-Chan Chae; Che Ok Jeon; Sung-Keun Rhee

DNA stable isotope probing and metagenomic sequencing were used to assess the metabolic potential of iron-reducing bacteria involved in anaerobic aromatic hydrocarbon degradation in oil spill-affected tidal flats. In a microcosm experiment, (13) C-toluene was degraded with the simultaneous reduction of Fe(III)-NTA, which was also verified by quasi-stoichiometric (13) C-CO2 release. The metabolic potential of the dominant member affiliated with the genus Desulfuromonas in the heavy DNA fraction was inferred using assembled scaffolds (designated TF genome, 4.40 Mbp with 58.8 GC mol%), which were obtained by Illumina sequencing. The gene clusters with peripheral pathways for toluene and benzoate conversion possessed the features of strict and facultative anaerobes. In addition to the class II-type benzoyl-CoA reductase (Bam) of strict anaerobes, the class I-type (Bcr) of facultative anaerobes was encoded. Genes related to the utilization of various anaerobic electron acceptors, including iron, nitrate (to ammonia), sulfur and fumarate, were identified. Furthermore, genes encoding terminal oxidases (caa3 , cbb3 and bd) and a diverse array of genes for oxidative stress responses were detected in the TF genome. This metabolic versatility may be an adaptation to the fluctuating availability of electron acceptors and donors in tidal flats.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea

Jong-Geol Kim; Soo-Je Park; Jaap S. Sinninghe Damsté; Stefan Schouten; W. Irene C. Rijpstra; Man-Young Jung; So-Jeong Kim; Joo-Han Gwak; Heeji Hong; Ok-Ja Si; Sang-Hoon Lee; Eugene L. Madsen; Sung-Keun Rhee

Significance Ammonia-oxidizing archaea (AOA) are major players in global nitrogen cycling, but the AOA carbon-nutrition paradigm is poorly understood. Once considered strict autotrophs, AOA also have been reported to assimilate organic carbon. We used a marine AOA isolate to test hypotheses about the role of fixed carbon in AOA nutrition. Results were confirmed with tests with four additional marine and terrestrial AOA. We discovered that α-keto acids (pyruvate, oxaloacetate) were not directly incorporated into AOA cells. Instead, the α-keto acids functioned as chemical scavengers that detoxified intracellularly produced H2O2 during ammonia oxidation. H2O2 toxicity was also counteracted by co-inoculating the AOA with bacteria harboring catalases. Thus, H2O2 toxicity in AOA may be an evolutionary force controlling AOA communities and global ammonia cycling. Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 μM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes.


Fems Microbiology Letters | 2008

Metagenome microarray for screening of fosmid clones containing specific genes

Soo-Je Park; Cheol-Hee Kang; Jong-Chan Chae; Sung-Keun Rhee

A critical step in the process of metagenome analysis is to screen for clones that contain specific genes among a large number of clones. To form one of the sequence-based screening tools of a metagenome library, we designed a format of microarray [metagenome microarray (MGA)] that is arrayed with fosmid library clone DNA samples on a glass slide. We evaluated the MGA using random prime labeled fluorescent probes prepared from PCR products of the target gene and found that we could obtain specific hybridization signals only for the fosmid clone that contained the target gene. We found that the detection limit of the MGA was c. 10 ng microL(-1) of fosmid clone DNA, and that the MGA-based hybridization was quantitative within a concentration range of 10-200 ng microL(-1) of fosmid clone DNA. We used the MGA successfully to identify two fosmid clones that contained 16S rRNA genes from a fosmid library from the sediment of the East Sea, Korea. In conclusion, we have demonstrated that the MGA can be used for screening for fosmid clones containing specific genes in a metagenome library, and that this technology has potential application as a high-throughput metagenome screening tool.


Journal of Microbiology | 2010

Isolation, characterization, and abundance of filamentous members of Caldilineae in activated sludge

Dae-No Yoon; Soo-Je Park; So-Jeong Kim; Che Ok Jeon; Jong-Chan Chae; Sung-Keun Rhee

Chloroflexi are currently believed to serve as backbone forming agents in the activated sludge of wastewater treatment plants (WWTPs). In this study, we isolated and characterized filamentous bacteria in the class Caldilineae of the phylum Chloroflexi in municipal WWTPs. Diversity analysis using Chloroflexi-specific 16S rRNA gene clone libraries showed that 97% of the clones belonged to the subdivision Anaerolineae comprising the two classes Anaerolineae (95%) and Caldilineae (2%). Clones of Caldilineae were related to a thermophilic filament Caldilinea aerophila with 93% 16S rRNA gene sequence similarity. We obtained filamentous isolates classified into the class Caldilineae showing the best match to C. aerophila with 89% 16S rRNA gene sequence similarity. Isolates showed no ability to assimilate glucose or N-acetylglucosamine or to degrade biopolymers which were observed in filamentous Chloroflexi of WWTPs. The assessment of relative abundance based on quantitative PCR of the 16S rRNA gene indicated that members of the class Caldilineae comprised 12–19% of the Chloroflexi in the activated sludge. Additionally, fluorescence in situ hybridization experiments showed that diverse filamentous Caldilineae inhabit the activated sludge of municipal WWTPs. These findings yield insight into the role of filamentous mesophilic Caldilinea in stabilizing flocs of activated sludge in a wide range of WWTPs.


Applied and Environmental Microbiology | 2014

A Mesophilic, Autotrophic, Ammonia-Oxidizing Archaeon of Thaumarchaeal Group I.1a Cultivated from a Deep Oligotrophic Soil Horizon

Man-Young Jung; Soo-Je Park; So-Jeong Kim; Jong-Geol Kim; Jaap S. Sinninghe Damsté; Che Ok Jeon; Sung-Keun Rhee

ABSTRACT Soil nitrification plays an important role in the reduction of soil fertility and in nitrate enrichment of groundwater. Various ammonia-oxidizing archaea (AOA) are considered to be members of the pool of ammonia-oxidizing microorganisms in soil. This study reports the discovery of a chemolithoautotrophic ammonia oxidizer that belongs to a distinct clade of nonmarine thaumarchaeal group I.1a, which is widespread in terrestrial environments. The archaeal strain MY2 was cultivated from a deep oligotrophic soil horizon. The similarity of the 16S rRNA gene sequence of strain MY2 to those of other cultivated group I.1a thaumarchaeota members, i.e., Nitrosopumilus maritimus and “Candidatus Nitrosoarchaeum koreensis,” is 92.9% for both species. Extensive growth assays showed that strain MY2 is chemolithoautotrophic, mesophilic (optimum temperature, 30°C), and neutrophilic (optimum pH, 7 to 7.5). The accumulation of nitrite above 1 mM inhibited ammonia oxidation, while ammonia oxidation itself was not inhibited in the presence of up to 5 mM ammonia. The genome size of strain MY2 was 1.76 Mb, similar to those of N. maritimus and “Ca. Nitrosoarchaeum koreensis,” and the repertoire of genes required for ammonia oxidation and carbon fixation in thaumarchaeal group I.1a was conserved. A high level of representation of conserved orthologous genes for signal transduction and motility in the noncore genome might be implicated in niche adaptation by strain MY2. On the basis of phenotypic, phylogenetic, and genomic characteristics, we propose the name “Candidatus Nitrosotenuis chungbukensis” for the ammonia-oxidizing archaeal strain MY2.


Microbiology | 2008

Molecular analysis of the diversity of the sulfide:quinone reductase (sqr) gene in sediment environments

Vinh Hoa Pham; Jeong-Joong Yong; Soo-Je Park; Dae-No Yoon; Won-Hyong Chung; Sung-Keun Rhee

Our newly designed primers were evaluated for the molecular analysis of specific groups of the sqr gene encoding sulfide : quinone reductase (SQR) in sediment environments. Based on the phylogenetic analysis, we classified the sqr sequences into six groups. PCR primers specific for each group were developed. We successfully amplified sqr-like gene sequences related to groups 1, 2 and 4 from diverse sediments including a marine sediment (SW), a tidal flat (TS), a river sediment (RS) and a lake sediment (FW). We recovered a total of 82 unique phylotypes (based on a 95 % amino acid sequence similarity cutoff) from 243 individual sqr-like gene sequences. Phylotype richness varied widely among the groups of sqr-like gene sequences (group 1>group 2>group 4) and sediments (SW>TS>RS>FW). Most of the sqr-like gene sequences were affiliated with the Proteobacteria clade and were distantly related to the reference sqr gene sequences from cultivated strains (less than approximately 80 % amino acid sequence similarity). Unique sqr-like gene sequences were associated with individual sediment samples in groups 1 and 2. This molecular tool has also enabled us to detect sqr-like genes in a sulfur-oxidizing enrichment from marine sediments. Collectively, our results support the presence of previously unrecognized sqr gene-containing micro-organisms that play important roles in the global biogeochemical cycle of sulfur.

Collaboration


Dive into the Soo-Je Park's collaboration.

Top Co-Authors

Avatar

Sung-Keun Rhee

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

So-Jeong Kim

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Jong-Geol Kim

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Man-Young Jung

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

In-Tae Cha

Incheon National University

View shared research outputs
Top Co-Authors

Avatar

Dong-Hyun Roh

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Hyeon-Woo Koh

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Joo-Han Gwak

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Byoung-Joon Park

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge