Soo-Jeong Shin
Chungbuk National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soo-Jeong Shin.
Bioresource Technology | 2010
Dae Haeng Cho; Soo-Jeong Shin; Yangwon Bae; Chulhwan Park; Yong Hwan Kim
In this study, alkaline-pretreatment for the extraction of acetic acid from xylan of hemicellulose was introduced prior to concentrated acid hydrolysis of yellow poplar wood meal. Ethanol fermentability in deacetylated yellow poplar hydrolysate (DYPH) by Pichia stipitis was also investigated. The alkali-pretreatment conditions were evaluated in terms of temperature, reaction time, and alkalinity. 94% of the acetyl group in xylan of the yellow poplar hemicellulose fraction was extracted using 0.5% sodium hydroxide solution at 60 degrees C for 60 min. The cell growth and ethanol production of P. stipitis was strongly affected by acetic acid, either in synthetic medium with 7.1g/l of acetic acid added or in yellow poplar hydrolysate (YPH) containing 7.1g/l of acetic acid. On the other hand, ethanol production in DYPH was slightly higher than that of the control although cell growth decreased by 34%. In the case of DYPH, the ethanol yield, volumetric ethanol productivity, and theoretical yield percentage was 0.48 g/g, 0.40 g/lh, and 93.2%, respectively. Thus, the alkaline-pretreatment method greatly enhanced the ethanol fermentability of yellow poplar hydrolysate.
Biotechnology and Bioprocess Engineering | 2012
Dae Haeng Cho; Soo-Jeong Shin; Yong Hwan Kim
The effect of acetic acid and formic acid on acetone-butanol-ethanol (ABE) production by solventogenic Clostridia was investigated. The ABE concentration in Clostridium acetobutylicum was found to have increased slightly on addition of 3.7 ∼ 9.7 g/L acetic acid, but was found to have drastically reduced in the presence of 11.7 g/L acetic acid. However, the solvent production of C. beijerinckii was not affected by addition of acetic acid in the range of 3.7 ∼ 11.7 g/L. C. acetobutylicum was more vulnerable to formic acid than C. beijerinckii. In C. acetobutylicum, the total ABE production decreased to 77% on addition of 0.4 g/L formic acid and 25% with 1.0 g/L formic acid. The total ABE production by C. acetobutylicum was also noted to have decreased from 15.1 to 8.6 g/L when 8.7 g/L acetic acid and 0.4 g/L formic acid co-existed. The solvent production by C. beijerinckii was not affected at all under the tested concentration range of formic acid (0.0 ∼ 1.0 g/L) and co-presence of acetic acid and formic acid. Therefore, C. beijerinckii is more favorable than C. acetobutylicum when the ABE is produced using lignocellulosic hydrolysate containing acetic and formic acid.
Bioresource Technology | 2011
Dae Haeng Cho; Soo-Jeong Shin; Yangwon Bae; Chulhwan Park; Yong Hwan Kim
The feasibility of ethanol production from the construction and demolition (C&D) wood waste acid hydrolysates was investigated. The chemical compositions of the classified C&D wood waste were analyzed. Concentrated sulfuric acid hydrolysis was used to obtain the saccharide hydrolysates and the inhibitors in the hydrolysates were also analyzed. The C&D wood waste composed of lumber, plywood, particleboard, and medium density fiberboard (MDF) had polysaccharide (cellulose, xylan, and glucomannan) fractions of 60.7-67.9%. The sugar composition (glucose, xylose, and mannose) of the C&D wood wastes varied according to the type of wood. The additives used in the wood processing did not appear to be released into the saccharide solution under acid hydrolysis. Although some fermentation inhibitors were detected in the hydrolysates, they did not affect the ethanol production by Pichia stipitis. The hexose sugar-based ethanol yield and ethanol yield efficiency were 0.42-0.46 g ethanol/g substrate and 84.7-90.7%, respectively. Therefore, the C&D wood wastes dumped in landfill sites could be used as a raw material feedstock for the production of bioethanol.
Soil and Sediment Contamination: An International Journal | 2013
Sim-Hee Han; Du-Hyun Kim; Soo-Jeong Shin
We evaluated the phytoremediation potential of Salix spp. exposed to high cadmium (Cd) and zinc (Zn) concentrations to select feasible plant materials for restoration and revegetation of mining soil contaminated by heavy metals on the basis of their Cd and Zn accumulation, Cd-Zn interaction on bioaccumulation, and the changes of photosynthetic parameters. The Cd and Zn concentrations were in the order of root > leaf > stem, regardless of the species. In the combined Cd and Zn treatment, the leaf and stem Cd concentration in all species were higher relative to Cd-alone treatment. In contrast, the Zn concentration in plant tissues when exposed to the combined Cd + Zn treatment decreased relative to the Zn-alone treatment. The translocation factor (TF) of Cd and Zn from root to leaf was generally higher compared to TF from root to stem than those in the single treatment. The Cd + Zn treatments resulted in enhanced translocation of Cd from root to aboveground tissue (synergistic), while the same treatment suppressed the Zn translocation from root to leaf and stem (antagonistic). The reduction of photosynthetic parameters in Zn alone and Cd + Zn treatments was generally higher than that of Cd-alone treatment. Among the different species, S. caprea and P. alba×glandulosa have the lowest photosynthetic reduction relative to the control. Overall, S. caprea could be a potential candidate for phytoremediation of Cd- and Zn-contaminated sites.
Biotechnology and Bioprocess Engineering | 2013
Dae Haeng Cho; Soo-Jeong Shin; Byoung-In Sang; Moon-Ho Eom; Yong Hwan Kim
ABE (acetone-butanol-ethanol) was produced through alkaline pre-hydrolysis, enzymatic saccharification, and fermentation using yellow poplar as a raw material. In alkaline pre-hydrolysis, 51.1% of the biomass remained as a residue. In the main woody components, the degrees of lignin and xylan removal were 94.3 and 62.0%, respectively. A yield of 80.9% for cellulose-to-glucose and 81.2% for xylan-to-xylose were obtained by enzymatic hydrolysis. The sugar composition of enzymatic hydrolysate was 95.1 g/L of glucose and 21.4 g/L of xylose. The enzymatic hydrolysate also contained 0.5 g/L of acetic acid and 0.5 g/L of total phenolics. Furfural and 5-hydroxymethylfurfural (5-HMF) were not detected in this hydrolysate. The yellow poplar hydrolysate (YPH) from enzymatic saccharification was used for the production of ABE using Clostridium acetobutylicum and C. beijerinckii. In YPH fermentation, C. acetobutylicum produced 18.1 g/L total ABE (productivity 0.38 g/L h, and yield 0.42), and C. beijerinckii produced 12.1 g/L (productivity 0.25 g/L h, and yield 0.37). Although the ABE productivity by C. beijerinckii was slightly low, the general performance of ABE fermentation in YPH was similar to or higher than those reported previously. Therefore, alkaline pre-hydrolysis could be a very effective pretreatment step prior to enzymatic hydrolysis.
Frontiers in Energy Research | 2014
Soo-Jeong Shin; Sim-Hee Han
To investigate solid raw material characteristics of willow (Salix caprea) bark and woody core, this study analysed overall chemical composition, monosaccharide composition, ash content, and main ash composition of both tree components. Significant differences were observed between the two in terms of chemical composition, carbohydrate composition, ash content, and major inorganics. The ash content in bark was 3.8–4.7 %, compared with 0.6–1.1 % in the woody core. Polysaccharide content in the woody core was 62.8–70.6 % but was as low as 44.1–47.6 % in the bark. The main hemicelluloses consisting of monosaccharides were xylose in the case of the woody core, and xylose, galactose, and arabinose in the case of bark. Woody core biomass of willow provides superior solid fuel raw material, as compared with bark biomass, with higher heating values, less ash content, and less slagging-causing material.
Journal of the Korean wood science and technology | 2015
Jaehyuck Choi; Soo-Jeong Shin; Byung-Ro Kim
To evaluate the possibility of charcoal as Green Infrastructure (GI) materials, data such as moisture content, amount of adsorbed water, and amount of evaporation were collected. Some data from previous study were referenced to find out if correlations exist between results in this study and previous study. Only porosity was directly related to moisture content. Two mechanical charcoal had better abilities than traditional charcoal in all three categories. Mechanical black charcoal chips produced by National Forestry Cooperative Federation (NFCFC) adsorbed 333.3% of water in thirty minutes, 297.5% in five minutes, and evaporated around 75% water in four days. This ability is much higher than other five charcoal. Even though results of test showed various degrees and NFCFC was the best as GI materials, data of charcoal were also within acceptable range based on generally accepted characteristics of GI materials.
Journal of the Korean wood science and technology | 2015
Mu-Seok Han; Jin-Ri Lee; Ji-Su Kim; Soo-Jeong Shin; Byung-Ro Kim
This study was conducted to investigate the relationship between water absorption (or hygroscopic property) and growth rate of rubra oak (Quercus rubra) from 5 different origins of seed (Carleton, Simcoe, Chatham, Bancroft, Unknown). Water absorption at cross section of Quercus rubra was 0.43∼0.92 g/㎠ and the property was not related with growth rate. Overall equilibrium moisture content of rubra oak were 11.35∼11.56% and 15.15∼15.83% at 40℃ with 75% and 90% relative humidities, respectively. There was no relationship between growth rate and moisture content(hygroscopy) in rubra oak. Based on the results, Rubra oak can be classified as a low hygroscopic wood grade, and thus might be a good raw material for furniture productions owing to its superior dimensional stability.
Journal of Conservation Science | 2012
Tae-Gwang Nam; Soo-Jeong Shin; Won-Kyu Park; Byung-Ro Kim
In this work, scientific and systematic analysis was conducted for finding out the methods and techniques of ancient ink stick making. Analysis the ancient ink stick on ancient documents and wooden writing as letter or painting, we concluded as followings. From the analysis of ancient wood by dendrochronology, wood was cut at 1899, which provided the information on the year of ink stick`s made on writing on ancient wood. Single particle size for soot of ancient ink stick was 107 nm for ink on the roof-filling timber in Sinsunwonjeon of Changdeok Palace, compared to 38 to 86 nm on the letter on ancient 12 paper document. Aggregate particle size was 370 nm for ink on the roof-filling timber in Sinsunwonjeon of Changdeok Palace, but 206 to 318 nm for aggregate particle size on 12 paper documents. There was similar pattern between single particle size and aggregate particle size of soot, which might provide the information of raw material for ancient ink. From infra-red and Raman spectroscopic analysis of sheet of writing on paper or wood, there was severe interference from background material (paper or wood). From Raman spectroscopic analysis of ancient ink carefully separated from ancient wood, spectrum pattern was closer to ink stick made by the soot from pine burning.
Journal of the Korean wood science and technology | 2016
Jai-Sung Lee; Soo-Jeong Shin
Pulp made from sugarcane bagasse (SCB) was bleached in element chlorine free (ECF) sequence. The peroxide bleaching process for the final bleaching process has been introduced in order to reduce the use of chlorine dioxide. Prior to peroxide bleaching, different chelating chemicals were applied. When 4.5% of the total chlorine dioxide was used, bleached SCB pulp using additional DTPA chelate stage (DEDQP) resulted in 87.0% of the ISO brightness. However, bleached pulp using simultaneous stage of DTPA chelate and chlorine dioxide (DE(DQ)P) was reached at 83.9% of the ISO brightness. The viscosity of DEDQP bleached pulp was 25.6 cPs, and the one of DE(DQ)P bleached pulp was 21.9 cPs. Decreasing of chelate effect by chlorine dioxide led to a decrease in the final brightness and a lower viscosity. But simultaneous stage of EDTA chelate and chlorine dioxide (DE(DQ)P) led to higher final brightness (87.0% ISO) and higher viscosity (25.8 cPs) than those of the bleached pulp (86.4% ISO, 25.2 cPs).