Soo Jin Adrian Koh
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soo Jin Adrian Koh.
Applied Physics Letters | 2009
Soo Jin Adrian Koh; Xuanhe Zhao; Zhigang Suo
Mechanical energy can be converted to electrical energy by using a dielectric elastomer generator. The elastomer is susceptible to various modes of failure, including electrical breakdown, electromechanical instability, loss of tension, and rupture by stretch. The modes of failure define a cycle of maximal energy that can be converted. This cycle is represented on planes of work-conjugate coordinates and may be used to guide the design of practical cycles.
IEEE-ASME Transactions on Mechatronics | 2011
Soo Jin Adrian Koh; Christoph Keplinger; Tiefeng Li; Siegfried Bauer; Zhigang Suo
Dielectric elastomers are being developed as generators to harvest energy from renewable sources, such as human movements and ocean waves. We model a generator as a system of two degrees of freedom, represented on either the stress-stretch plane or the voltage-charge plane. A point in such a plane represents a state of the generator, a curve represents a path of operation, a contour represents a cycle of operation, and the area enclosed by the contour represents the energy of conversion per cycle. Each mechanism of failure is represented by a curve in the plane. The curves of all the known mechanics of failure enclose the region of allowable states. The area of this region defines the maximum energy of conversion. This study includes the following mechanisms of failure: material rupture, loss of tension, electrical breakdown, and electromechanical instability. It is found that natural rubber outperforms VHB elastomer as a generator at strains less than 15%. Furthermore, by varying material parameters, energy of conversion can be increased above 1.0 J/g.
Journal of Applied Physics | 2012
Choon Chiang Foo; Shengqiang Cai; Soo Jin Adrian Koh; Siegfried Bauer; Zhigang Suo
The dynamic performance of dielectric elastomer transducers and their capability of electromechanical energy conversion are affected by dissipative processes, such as viscoelasticity, dielectric relaxation, and current leakage. This paper describes a method to construct a model of dissipative dielectric elastomers on the basis of nonequilibrium thermodynamics. We characterize the state of the dielectric elastomer with kinematic variables through which external loads do work, and internal variables that measure the progress of the dissipative processes. The method is illustrated with examples motivated by existing experiments of polyacrylate very-high-bond dielectric elastomers. This model predicts the dynamic response of the dielectric elastomer and the leakage current behavior. We show that current leakage can be significant under large deformation and for long durations. Furthermore, current leakage can result in significant hysteresis for dielectric elastomers under cyclic voltage.
International Journal of Applied Mechanics | 2011
Xuanhe Zhao; Soo Jin Adrian Koh; Zhigang Suo
This paper describes an approach to construct models of dielectric elastomers undergoing dissipative processes, such as viscoelastic, dielectric and conductive relaxation. This approach is guided by nonequilibrium thermodynamics, characterizing the state of a dielectric elastomer with kinematic variables through which external loads do work, as well as internal variables that describe the dissipative processes. Within this approach, a method is developed to calculate the critical condition for electromechanical instability. This approach is illustrated with a specific model of a viscoelastic dielectric elastomer, which is fitted to stress-strain curves of a dielectric elastomer (VHB tape), measured at various strain rates. The model shows that a higher critical voltage can be achieved by applying a constant voltage for a shorter time, or by applying ramping voltage with a higher rate. A viscoelastic dielectric elastomer can attain a larger strain of actuation than an elastic dielectric elastomer.
Journal of Applied Physics | 2012
Choon Chiang Foo; Soo Jin Adrian Koh; Christoph Keplinger; Rainer Kaltseis; Siegfried Bauer; Zhigang Suo
Dielectric elastomer generators are high-energy-density electromechanical transducers. Their performance is affected by dissipative losses. This paper presents a theoretical analysis of a dielectric elastomer generator with two dissipative processes: viscoelasticity and current leakage. Conversion cycles are shown to attain steady-state after several cycles. Performance parameters such as electrical energy generated per cycle, average power, and mechanical to electrical energy conversion efficiency are introduced. Trade-offs between large electrical energy and power output and poor conversion efficiency are discussed. Excessive current leakage results in negative efficiency—the dielectric elastomer generator wastes energy instead of generating it. The general framework developed in this paper helps in the design and assessment of conversion cycles for dissipative dielectric elastomer generators.
RSC Advances | 2014
Rainer Kaltseis; Christoph Keplinger; Soo Jin Adrian Koh; Richard Baumgartner; Yu Feng Goh; Wee Hoe Ng; Alexander Kogler; Andreas Tröls; Choon Chiang Foo; Zhigang Suo; Siegfried Bauer
Clean, renewable and abundant sources of energy, such as the vast energy of ocean waves, are untapped today, because no technology exists to convert such mechanical motions to electricity economically. Other sources of mechanical energy, such as motions of people and vibrations of buildings and bridges, can potentially power portable electronics and distributed sensors. Here we show that natural rubber can be used to construct generators of high performance and low cost. Natural rubber has higher elastic modulus, fracture energy and dielectric strength than a commonly studied acrylic elastomer. We demonstrate high energy densities (369 mJ g−1) and high power densities (200 mW g−1), and estimate low levelized cost of electricity (5–11 ct kW−1 h−1). Soft generators based on natural rubber enable clean, low-cost, large-scale generation of electricity.
International Journal of Applied Mechanics | 2014
A.N. Roy Chowdhury; C. M. Wang; Soo Jin Adrian Koh
Molecular dynamics (MD) simulations are performed using adaptive intermolecular reactive bond order potential to analyze single-walled and double-walled carbon nanotubes. These carbon nanotubes were analyzed for buckling under compression and under torsion. The MD simulations create a comprehensive database for the critical buckling loads/strains and critical buckling torques/twist angles for armchair SWCNTs and DWCNTs of varying diameters and lengths. Using MD results as a computational benchmark, an equivalent thick shell model of CNT is proposed, which is amenable for analysis using a commercially available software ABAQUS. Based on our MD results, an empirical equation that describes the size-dependent Youngs modulus for a single-walled carbon nanotube is established. Buckling analysis of CNT under compression and under torsion are performed with the equivalent shell model using size-dependent Youngs modulus, Poissons ratio = 0.19 and shell thickness h = 0.066 nm. We show that the equivalent shell model gives good estimate of critical buckling load/strain and critical buckling torque with respect to the MD results. Variation of critical twist angle with length of CNT, predicted by the shell model is in good qualitative agreement with MD simulation. However, the equivalent shell model underestimates the critical twist angle by 30% because the continuum shell model overestimates torsional stiffness of CNT compared to an atomistic model of CNT. The equivalent shell model is less computational intensive to implement as compared with MD. Its accuracy for predicting the buckling states for long carbon nanotubes allows it to be used for moderately long CNTs under compression/torsion, in-lieu of MD simulations.
Structural Health Monitoring-an International Journal | 2004
Soo Jin Adrian Koh; M. Maalej; Ser Tong Quek
A one-way reinforced concrete (RC) slab was subjected to short-duration concentrated impact load and its dynamic characteristic for the virgin and damaged conditions were studied using two signal processing techniques. The recorded strain and acceleration signals were analyzed using the Fast Fourier Transform (FFT) and the Hilbert Huang Transform (HHT). From these analyses, the percentage reductions in the modal frequency for varying degrees of damage (or magnitude of applied load) were obtained. Based on the eigen-solution of a 3-element partitioned beam model, the frequency–damage relationship was also estimated using the observed initial flexural stiffness of the half-cycle hysteresis path associated with each stage of applied load. Both semi-empirical and experimental results showed close agreement and a 30% frequency reduction was observed between the virgin state and yield. Three quarters of the total frequency reduction from virgin-to-yield occurred within an applied load range of 30% of the yield load.
Applied Physics Letters | 2015
Qi Jian Lim; Pai Wang; Soo Jin Adrian Koh; Eng Huat Khoo; Katia Bertoldi
We combine numerical analysis and experiments to investigate the effect of hierarchy on the propagation of elastic waves in triangular beam lattices. While the response of the triangular lattice is characterized by a locally resonantband gap, both Bragg-type and locally resonant gaps are found for the hierarchical lattice. Therefore, our results demonstrate that structural hierarchy can be exploited to introduce an additional type of band gaps, providing a robust strategy for the design of lattice-based metamaterials with hybrid band gapproperties (i.e., possessing band gaps that arises from both Bragg scattering and localized resonance).
International Journal of Structural Stability and Dynamics | 2014
Amar Nath Roy Chowdhury; C. M. Wang; Soo Jin Adrian Koh
In this paper, an equivalent thick cylindrical shell model is proposed for the buckling analysis of short single-walled carbon nanotubes (SWCNTs) with allowance for different chiral angles. Extensive, molecular dynamics (MD) simulations are first performed using the adaptive intermolecular reactive bond order potential to determine the critical buckling loads/strains. The MD simulations buckling results are then used as reference solutions to calibrate the properties of the thick cylindrical shell model. Central to this development is the establishment of an empirical expression for the Youngs modulus that is a function of both the diameter and the chiral angle of the SWCNT. For the shell model, we have assumed that the Poisson ratio ν = 0.19 and the shell thickness h = 0.066 nm. It will be shown that the proposed shell model furnishes good estimates of the critical buckling loads for SWCNTs with different chiral angles. The critical buckling strains are also evaluated from the critical buckling load with the aid of the stress-strain relation of SWCNTs.